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0.1 Introduction

These notes contain a revised and updated account of a series of articles
published by the author and collaborators in the last three decades [1–24],
concerning the physical applications of the space of inertial local frames.

In the standard approach, summarized in Chapter 1, one starts from a
4-dimensional pseudo-Riemannian spacetime M and builds, by means of a
standard mathematical procedure [25–27], the 10-dimensional principal fiber
bundle S of the Lorentz frames, which is a very useful, but not necessary,
instrument for the treatment of the known relativistic theories of gravitation.
Also Maxwell and Yang-Mills theories can be included in this scheme by
considering an “extended” principal fibre bundle Sn with a higher dimension.

There is no need for a new detailed exposition of this argument, which
has been treated by many authors. We only present in Chapter 1 the basic
ideas, in order to introduce some definitions and notations and to write some
important formulas to be used later.

Our main purpose is to present a substantially different point of view,
namely we start from the manifold S with a direct physical interpretation,
and, if some conditions to be physically verified are satisfied, we build the
spacetime manifold M by means of a suitable mathematical procedure. If
these conditions are not satisfied, we have a nonlocal theory. In this way,
we can introduce in a classical geometry a fundamental length ℓ, which is
suggested by quantum gravity.

The development of this alternative point of view gives the opportunity
for a discussion of some general aspects of physics concerning, for instance,
the relativity principle, symmetry transformations and conserved quantities.
We shall try to give some indications of this kind whenever we think that it
may be useful.

We restrict our attention to the classical aspects of geometry, with some
applications to quantum theories of matter in a classical geometric back-
ground. Since we are not interested in nonrelativistic mechanics, by “classi-
cal” we always mean “nonquantum”. We indicate, whenever it is necessary,
the points in which a classical geometry is not consistent with quantum the-
ory. We hope that a new approach to classical geometry can provide new
starting points and new ideas for the construction of a quantum theory of
gravitation, namely a quantum geometry.

In Chapter 2 we treat the geometry of the space S, defined in terms
of transformations, namely mappings of S into itself, interpreted as physical
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procedures that have the purpose of building a new frame starting from a pre-
existent one. The transformations have a strict operational interpretation,
while the frames, namely the single points of S, are not operationally defined.
This remark provides a foundation for a general formulation of the relativity
principle, that states that all the frames are, a priori, physically equivalent.

We dedicate some attention to the problems raised by the very concept of
inertial local frame, which has to be defined in terms of some material objects
which inavoidably interact with the objects under investigation and with
the measuring instruments. This remark is connected with the difficulties
encountered in the construction of a quantum theory of gravitation.

In Chapter 3 we introduce in the tangent spaces of S a cone that char-
acterizes the infinitesimal “feasible” transformations. The symmetry group
of this cone is GL(4,R) and we think that it is not an accident that 4 also
is the number of components of the Dirac fields that describe matter in the
Standard Model of elementary particles. We also discuss some mathematical
properties of this group, of some of its subgroups and of some of their rep-
resentations. GL(4,R) has a subgroup isomorphic to SL(2,C) the universal
covering of the proper orthochronous Lorentz group. We advance the idea
that a field theory may have a spontaneouly broken symmetry with respect
to a larger subgroup of GL(4,R).

In Chapter 4 we deal with a Lagrangian approach to the classical field
theories defined on S and with the connection between symmetries and con-
servation laws (Noether’s theorem). In Chapter 5 we apply this formalism to
several classical field theories usually defined on the spacetime manifold. In
Chapter 6 we treat a scalar-tensor theory, giving a geometrical interpretation
to the scalar field that replaces the gravitational constant.

In Chapter 7 we look for Lagrangian field theories with a symmetry group
larger than the Lorentz group. This is a rather difficult problem and only
preliminary, not completely satisfactory results are presented. We hope to
give more complete results in a future version of these notes.

In Chapter 8 we describe the motion of a test particles by associating to
it a set of frames that form a submanifold of S. If we consider the particle
as a small region in which the fields are particularly strong, the particle
dynamics is provided by the balance equations of the underlying field theory.
Alternatively, one can introduce an independent Lagrangian or Hamiltonian
particle dynamics. The treatment of test particles is relevant for the physical
interpretation of field theories.

The Chapters 9, 10 and 11 are not yet complete and contain only some
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references to the original papers. In the following versions they will present
some other aspects of the formalism based on local inertial frames.

The present notes contain mainly already published material, though
many ideas and calculations have been clarified and improved. We hope that
a consistent description of the state of the art will be useful for a further
progress. We devote a special attention to the best choice of the notations
and conventions, modifying in some cases the choices adopted in the original
articles. We cite the most relevant contributions of other authors, also if they
do not agree completely with our point of view, but we do not claim that the
list of references is complete. It will be improved in the following versions of
these notes.

We do not try to give a set of references to the wide literature on quantum
gravity. Even giving some references to review articles and books would imply
a relative evaluation of the different approaches, which is neither necessary
nor useful for the purposes of the present notes. In any case, an extended
analysis of the classical theory is an important step for the construction of a
quantum theory.

0.2 Notations and conventions

For the velocity of light, we always use the convention c = 1, while we write
the Planck constant h̄, the gravitational constant G and the fundamental
length ℓ explicitly. We use rationalized units, namely a factor 4π appears in
the Coulomb law, but not in the source terms of Maxwell’s equations.

The indices i, j, k, l,m, n, p, q take the values 0, 1, 2, 3 and label, for in-
stance, the anholonomic components of the SO(1, 3) tensors. The indices
λ, µ, ν, σ, τ take the same values and label the local coordinates in the space-
time M and the holonomic tensor components. The indices r, s, t take the
values 1, 2, 3. The indices u, v, w, x, y, z take the values 0, 1, 2, 3, 4 and appear
in the tensor calculus of the anti-de Sitter group SO(2, 3). When explicitly
stated, they also take the value 5 and are used in the tensor calculus of the
group SO(3, 3).

The indices α, β, γ, δ, ǫ, ζ, η, θ take the values 0, . . . , 9 + n, where n is
the dimension of the internal gauge group. If n > 0, the indices a, b, c, d
take the values 10, . . . , 9 + n and label a basis in the Lie algebra of the
internal gauge group. If n = 1, the index 10, which labels the generator of
the electromagnetic gauge transformations, is replaced by the symbol • for
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typographical reasons.
The summation over a pair of repeated, upper and lower, indices is un-

derstood unless a different indication is given.
The Minkowskian metric tensor gik = gik is diagonal and we put g00 = −1,

grs = δrs. This convention, different from the one adopted in the preceding
articles, is particularly convenient in connection with Hamiltonian mechan-
ics. If we indicate by pi the generators of the active spacetime translations,
conjugate to the Minkowskian spacetime coordinates xi, the three quantities
pr = pr are the momentum components and p0 = −p0 is the generator of the
passive time translations, namely the energy. Another advantage is that the
Dirac γ matrices in the Majorana representation are real.

We indicate by ǫ the antisymmetric Levi-Civita symbol, with the normal-
ization ǫ0123 = −ǫ0123 = 1 in relativistic tensor calculus and ǫ1234 = ǫ1234 = 1
in Dirac spinor calculus.

For the sign conventions concerning the Riemann curvature tensor, we
follow ref. [28], where the conventions used by other authors are also dis-
cussed.

The three-dimensional vectors are indicated by bold-face letters. The
scalar product, the vector product and the norm are represented respectively
by u · v, u × v and ‖u‖. If u = (u0,u) and v = (v0,v) are four-vectors, we
write their scalar product in the form u · v = giku

ivk = u · v − u0v0.
The indices of Dirac spinors and γ matrices are usually understood, since

we use a matrix notation. When it is necessary, we use for them the capital
letters A,B,C,D, . . . that take the values 1, . . . , 4. In a similar way, the com-
ponents of the nongeometric fields are represented by a one-column matrix
and when necessary they are labelled by the capital letters U, V,W .

Modifying a convention used in the preceding articles, we assume that
the structural group (for instance the Lorentz group) has a right action on
the principal bundle, in agreement with the majority of the textbooks of
differential geometry. The elements of the structural group act on the local
frames, namely they have a passive interpretation. When they operates on
the observables, namely they are considered from the active point of view,
they have a left action, as it is usually assumed.

We use italic fonts to indicate important concepts that appear for the
first time and can be found in the Index.
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0.3 Some useful identities

In this Section we collect some identities that we shall often use in the calcu-
lations. They concern mainly the antisymmetric tensor ǫijkl, the differential
1-forms ωi and the Dirac matrices γi.

A first set of identities is

ǫijklǫijkl = −24, ǫmijkǫnijk = −6δmn , ǫijmnǫklmn = −2(δikδ
j
l − δjkδ

i
l),

ǫijklǫimnp = −δjmδ
k
nδ

l
p − δlmδ

j
nδ

k
p − δkmδ

l
nδ

j
p + δkmδ

j
nδ

l
p + δlmδ

k
nδ

j
p + δjmδ

l
nδ

k
p . (1)

Since an expression completely antisymmetric with respect to 5 indices
that can take only 4 values must vanish, we have the useful identity

ǫijklxm − ǫmjklxi − ǫimklxj − ǫijmlxk − ǫijkmxl = 0. (2)

The differential forms

η = ω0 ∧ ω1 ∧ ω2 ∧ ω3 = (24)−1ǫijklω
i ∧ ωj ∧ ωk ∧ ωl, (3)

ηi = 6−1ǫijklω
j ∧ ωk ∧ ωl = i(Ai)η (4)

appear in many formulas. They have the properties

ωi∧ωj∧ωk∧ωl = −ǫijklη, ωj∧ωk∧ωl = −ǫijklηi, ωk∧ηi = δki η. (5)

The Dirac matrices, characterized by the equation

γiγk + γkγi = 2gik, (6)

have the properties

Tr (γiγk) = 4gik, Tr (γiγjγkγl) = 4(gijgkl − gikgjl + gilgjk), (7)

γ5 = −γ5 = γ0γ1γ2γ3 = −(24)−1ǫijklγ
iγjγkγl, (γ5)

2 = −1, (8)

Tr (γ5γ
iγjγkγl) = −4ǫijkl, (9)

(γiγk − γkγi)γ5 = ǫikjlγ
jγl. (10)

γiγjγk = ǫlijkγ
lγ5. (11)
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Chapter 1

The (extended) principal fiber
bundle of the Lorentz frames

1.1 Tetrads

With the aim of introducing some concepts and notations, we consider first
a theory based on a pseudo-Riemannian connected 4-dimensional spacetime
manifold M. In order to define the components of vector and tensor fields,
we have to define a basis in the tangent spaces TxM at all the points x ∈ M.
We can introduce local coordinates xµ and the basis provided by the vectors
∂µ = ∂/∂xµ (remember that there is a one-to-one correspondence between
vector fields and first order linear differential operators). We obtain in this
way the holonomic components.

In particular, we indicate by gµν the holonomic components of the covari-
ant metric tensor and by gµν the elements of the inverse matrix, which are
the components of a contravariant tensor. These tensors can be used to raise
and lower the holonomic indices of other tensors.

We can also introduce at every point x ∈ M an orthonormal tetrad (also
called, in German, Vierbein) of four-vectors ei(x), with the property

ei · ek = gµνe
µ
i e
ν
k = gik. (1.1)

By means of these bases we obtain the anholonomic components of vector and
tensor fields. An explanation of the notations and the values of the constant
anholonomic components gik = gik of the metric tensor, which can be used to
raise and lower the anholonomic indices, is given in Section 0.2. The use of a
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tetrad field (also called moving frame or repère mobile in French) is a powerful
instrument in differential geometry, extensively used by E. Cartan [29].

We assume that the reader is acquainted with the simpler aspects of Rie-
mannian geometry in the holonomic formalism (see for instance [30–32]) and
in this Section we present some basic concepts of the anholonomic formal-
ism, necessary for the motivation of the more general scheme introduced in
Section 2.

The matrices eµi and their inverses eiµ can be used to transform holonomic
indices into anholonomic ones and vice-versa, namely to perform a change of
basis. In particular, the formula

gµν = eiµe
k
νgik (1.2)

shows that the tetrads determine the metric tensor. The quantities eiµ are
the components of a dual tetrad of covariant four-vectors ei that form a basis
in the cotangent space T ∗

xM.
One can show that the set of all the tetrads is a differentiable manifold,

which we indicate by S. The tetrads with a common origin x form a fiber and
one can consider the differentiable projection mapping π : S → M associating
to every tetrad s ∈ S its origin x = π(s) ∈ M.

If Λi
k is a 4×4 Lorentz matrix, it transforms a tetrad into another tetrad

according to the formula

ei → e′i = ekΛ
k
i, ei → e′i = (Λ−1)ike

k, (1.3)

which can also be written in the abbreviated form s→ s′ = sΛ. We see that
there is a right action of the Lorentz group L on the manifold S. This means
that s(ΛΛ′) = (sΛ)Λ′ and the parentheses are not necessary. The action
of L preserves the fibers (namely it commutes with π) and acts freely and
transitively on every fiber. As a consequence, every fiber is diffeormorphic to
L. In this situation one says [25–27] that S is a principal fiber bundle with
base M and structural group L.

There is an important detail to be clarified. It is natural to assume that
in every tangent space TxM it is possible to choose in a continuous way
a future cone, namely that M is time orientable [33]. This is a physically
justified restriction to the topology of M. Then it is natural to consider only
tetrads with the timelike four-vector e0 belonging to the future cone. As a
consequence, L has to be the orthochronous Lorentz group.
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The group L contains the space inversion and has two connected com-
ponents. Of course, the fibers have the same property. If the connected
manifold M is orientable, S has two connected components containing the
left-handed and the right-handed tetrads. Otherwise, S is connected.

A principal fiber bundle is the natural arena for gauge field theories. In
particular it has been shown [34–38] that General Relativity and other theo-
ries of gravitation can be formulated as gauge theories of the Lorentz group
L or of the Poincaré group P.

1.2 Tensor and spinor fields

The anholonomic components of tensor fields on M are uniquely determined
when the frame s ∈ S is given and have to be considered as scalar fields on
S. They behave in a particular way when s moves on a fiber. For instance,
a scalar (on M) field S has the property

S(sΛ) = S(s), Λ ∈ L, (1.4)

namely it is constant on the fibers. The anholonomic components V i of a
vector field satisfy the condition

V i(sΛ) = V · ei(sΛ) = V · ((Λ−1)ike
k(s)) = (Λ−1)ikV

k(s). (1.5)

The inverse matrix Λ−1 appears because Λ is interpreted a passive trans-
formation, namely a change of the frame leaving the vector V unchanged.
If, instead, we consider an active transformation, that changes the vector V
leaving the frame unchanged, the matrix Λ appears in the transformation
property.

A more general tensor field is characterized by the condition

Ψ(sΛ) = Σ(Λ−1)Ψ(s), (1.6)

where the elements of the one-column matrix Ψ are the anholonomic tensor
components and the square matrix Σ belongs to a linear representation of L.

A similar formula holds for a spinor, but Σ is a two-valued representation
and the spinor components too are two-valued functions of s. A more rig-
orous approach is to consider a double covering S̃ of S, which is a principal
fiber bundle with structural group L̃, a double covering of L, which contains
SL(2,C) and two elements corresponding to the space inversion [39]. Then
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the components of the spinor fields are one-valued functions on S̃ and Σ is a
one-valued linear representation of L̃. The fiber bundle S̃ exists only if M
has suitable topological properties and in this case one says that M admits a
spin structure. The use of tetrads to treat spinor fields on a curved spacetime
has been introduced by H. Weyl [40].

1.3 Infinitesimal Lorentz transformations

For many purposes, it is useful to consider infinitesimal Lorentz transforma-
tions of the kind

Λi
k ∼ δik + ζ ik, ζ ik = −ζki. (1.7)

Their action on S is generated by the vector fields (or differential operators)
A[ik] defined by

f(sΛ) ∼ f(s) + 2−1ζ [ik]A[ik]f(s), (1.8)

where f is an arbitrary differentiable function and Λ is given by eq. (1.7).
These vector fields are tangent to the fibers, which are diffeomorhic to

L. They can be considered as generators of right translations of the group L
and they define a basis of its Lie algebra o(1, 3). Here and in the following,
in order to obtain more readable formulas, we always enclose into square
brackets the pairs of antisymmetric indices which label the elements of this
basis.

The sign of the parameters ζ [ik] depends on the choice of the metric gik.
With our choice (see sect. 0.2), for instance, ζ [21] = ζ2

1 describes a counter-
clockwise rotation around e3 and ζ [03] = ζ0

3 describes a boost along e3.
If we introduce in an open region of M a set of local coordinates xµ, we

can parametrize locally S by means of the redundant coordinates (xµ, eµi )
constrained by eq. (1.1). Then we can write the explicit formula

A[ik] = (gkje
µ
i − gije

µ
k)

∂

∂eµj
. (1.9)

One has to be careful in dealing with partial derivatives with respect to
variables which are not independent. First we define the vector fields (1.9)
in the space of the unconstrained variables and then we check that they
are tangent to the manifold defined by eq. (1.1) namely that, on the same
manifold, we have

A[ik](gµνe
µ
j e
ν
l ) = 0. (1.10)
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By computing the commutator we obtain

[A[ik], A[jl]] = 2−1F̂
[mn]
[ik][jl]A[mn], (1.11)

where the quantities

F̂
[mn]
[ik][jl] = δmi gkjδ

n
l − δmk gijδ

n
l − δmi gklδ

n
j + δmk gilδ

n
j

−δni gkjδ
m
l + δnk gijδ

m
l + δni gklδ

m
j − δnk gilδ

m
j (1.12)

are the structure constants of the Lorentz Lie algebra.
The behavior of tensor and spinor fields under Lorentz transformations,

described in Section 1.2 can be written as a differential equations. For the
scalar and vector fields we obtain

A[ik]S = 0, A[ik]V
j = −(δji gkl − δjkgil)V

l (1.13)

and in general, if we write the components of a tensor or spinor in the form
of a one-column matrix Ψ, we have

A[ik]Ψ = −Σ[ik]Ψ. (1.14)

The square matrices Σ[ik] are defined by

Σ(Λ) ∼ 1 + 2−1ζ [ik]Σ[ik], (1.15)

where Λ is given by eq. (1.7).
They form a representation of the Lie algebra o(1, 3) of L, namely we

have
[Σ[ik],Σ[jl]] = 2−1F̂

[mn]
[ik][jl]Σ[mn]. (1.16)

For a Dirac spinor we have

Σ[ik] = 2−2(γiγk − γkγi). (1.17)

Σ[ik]γj − γjΣ[ik] = gkjγi − gijγk. (1.18)

The properties of the γ-matrices are summarized in Section 0.3.
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1.4 Maxwell and Yang-Mills fields

As the theories of gravitation, also the gauge field theories with internal
gauge group G [41] have an elegant geometric treatment in the framework
of a principal fibre bundle with structural group G [42]. We always specify
“internal” because gravitation too is described by a gauge theory. If G =
U(1) = SO(2), we obtain Maxwell’s electromagnetism and for G = SU(2)
we have the original Yang-Mills theory [43].

Several authors [44–46] have proposed a unified treatment of gravitation
and internal gauge theories based on a principal fibre bundle with base M
and structural group L × G. If G is a Lie group with dimension n, this
bundle has dimension 10 + n. We call it the bundle of extended frames and
we indicate it by Sn. It can also be considered as a principal fibre bundle
with base S and structural group G. Of course, if n = 0 we have S0 = S.
This approach is similar to the Kaluza-Klein unification of gravitation and
electromagnetism [47,48], but it is conceptually rather different.

The right action of G on Sn is generated by n vector fields Aa, where the
index a labels a basis of the Lie algebra of G. In the treatment of the Maxwell
field, we have n = 1 and we indicate the generator of the electromagnetic
gauge transformations by A•. If n > 1, the vector fields Aa satisfy the
commutation relations (or Lie brackets)

[A[ik], Aa] = 0, [Aa, Ab] = F̂ c
abAc, (1.19)

where F̂ c
ab are the structure constants of the Lie algebra of G.

In order to obtain a local parametrization of Sn, we have to choose, besides
a local coordinate system in M, a gauge at every point x ∈ M. Then the
extended frame s ∈ Sn is determined by the quantities (xµ, eµi , g), where
g ∈ G, represents the gauge transformation from the conventionally chosen
gauge at x = π(s) to the gauge choice at s. The group element g, in turn,
can be locally parametrized by n real coordinates. Note that g is not affected
by the right action of the Lorentz group L. The generators Aa of the internal
gauge transformations also describe the infinitesimal right translations of the
group G and there is no problem in using the same symbols for the vector
fields defined in Sn and in G.

In Section 1.5 we need the vector fields ALa that generate the left trans-
lations on the group G. They commute with the generators Aa of the right
translations and satisfy the commutation relations

[ALa , A
L
b ] = −F̂ c

abA
L
c (1.20)
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(note the minus sign). They can be written in the form

LLa = Db
a(g

−1)Ab, (1.21)

where the matrices Db
a belong to the adjoint representation of G. The vector

fields ALa , originally defined on G, can also be considered as vector fields on
Sn, but in this case they depend on the choice of the parametrization.

In Section 1.8 we use the left invariant Maurer-Cartan one-forms χb on
the gauge group G defined by the formula

χb(Aa) = δba. (1.22)

They can be written in terms of the local coordinates of the group G and they
can also be considered as differential forms defined on Sn, which, however
depend on the choice of the parametrization. In any case we have [25, 26]

dχa = −2−1F̂ a
bc χ

b ∧ χc. (1.23)

The group G acts linearly on the fields. If, as in eq. (1.14), we consider
the field components as the elements of a one-column matrix Ψ, we have

Ψ(sg) = Σ(g−1)Ψ (1.24)

and the infinitesimal transformations are given by

AaΨ = −ΣaΨ. (1.25)

The matrices Σa form a representation of the Lie algebra of G, namely

[Σa,Σb] = F̂ c
abΣc. (1.26)

We use the same symbol Σ for both the representations of L and of G, because
we consider them as special cases of a representation of the structural group
L × G.

If G = U(1), g is a phase factor and it is convenient to put g = exp(ieϕ),
where ϕ is a cyclic real parameter with period 2πe−1 and e is the elementary
electric charge. In this case we have

AL• = A• =
∂

∂ϕ
, χ• = dϕ. (1.27)

If Ψ is a complex field carrying the electric charge Ze, we have

A•Ψ =
∂

∂ϕ
Ψ = −Σ•Ψ = −iZeΨ. (1.28)
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1.5 Parallel transport

A fundamental concept in Riemannian geometry is the parallel transport. If
a tetrad vector ej is parallel transported from a point with coordinates xλ to
a point with coordinates xλ + dxλ, we have (as for any other contravariant
four-vector field) [28, 30–32]

δeµj = −Γµνλe
ν
jdx

λ, (1.29)

where Γµνλ are the connection coefficients. They depend only on xλ and satisfy
the metricity condition

∂gµν
∂xλ

− Γσµλgσν − Γσνλgµσ = 0, (1.30)

that assures that the covariant derivative of the metric tensor vanishes. In
a torsionless theory, the connection coefficients are given by the Christoffel
symbols.

If n > 0, the action of a parallel displacement on the group element g is
an infinitesimal left translation that depends linearly on dxλ. In conclusion, a
parallel displacement of the tetrads in the direction of the tetrad four-vector
ei is described by the vector field

Ai = eλi

(

∂

∂xλ
− Γµνλe

ν
j

∂

∂eµj
+ aaλA

L
a

)

, (1.31)

where aaλ(x) are the potentials of the gauge field and ALa are the generators
of the left translations introduced in Section 1.4. In this case too, since we
are not dealing with independent variables, we have to verify that the fields
(1.31) are tangent to the manifold defined by eq. (1.1), namely that

Ai(gµνe
µ
ke
ν
j ) = 0. (1.32)

This is a consequence of the condition (1.30).
After some calculations, we find for the commutators the following ex-

pressions
[A[ik], Aj] = F̂ l

[ik]jAl, (1.33)

[Aa, Aj] = 0, (1.34)

[Ai, Ak] = 2−1F
[jl]
ik A[jl] + F j

ikAj + F a
ikAa, (1.35)
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where
F̂ l

[ik]j = gkjδ
l
i − gijδ

l
k, (1.36)

F
[jl]
ik = −eλi e

σ
ke
j
µe
lνRµ

νλσ, Rµ
νλσ =

∂Γµνσ
∂xλ

−
∂Γµνλ
∂xσ

+ΓµτλΓ
τ
νσ−ΓµτσΓ

τ
νλ, (1.37)

F j
ik = eλi e

σ
ke
j
µS

µ
λσ, Sµλσ = Γµλσ − Γµσλ, (1.38)

F a
ik = eλi e

σ
kD

a
d(g

−1)F d
λσ, F d

λσ =
∂adσ
∂xλ

−
∂adλ
∂xσ

− F̂ d
bca

b
λa

c
σ. (1.39)

The quantities Rµ
νλσ, S

µ
λσ and F d

λσ are, respectively, the holonomic compo-
nents of the Riemann curvature tensor, the torsion tensor and the gauge field
strength. The quantities F

[jl]
ik , F j

ik and F a
ik are, up to a sign convention, the

anholonomic components of the same tensors, given as functions on Sn.
The structure constants (1.36) can be used to write the Lorentz transfor-

mation properties of contravariant and covariant four-vectors in the form

A[ik]V
j = −F̂ j

[ik]lV
l, A[ik]Vj = F̂ l

[ik]jVl. (1.40)

1.6 Covariant derivatives and spin connection

If we consider the anholonomic components V j of a vector field carrying a
charge Ze, by means of the useful formula

∂ekρ
∂eµj

= −ekµe
j
ρ, (1.41)

we obtain

AiV
k = eλi e

k
µ

(

∂V µ

∂xλ
+ ΓµνλV

ν − iZea•λV
µ

)

, (1.42)

namely the anholonomic components of the covariant derivatives of V . This
result was expected, if one remembers the meaning of the vector fields Ai,
and a similar result holds for the anholonomic components of any tensor or
spinor field, also with nontrivial transformation properties under the gauge
group G. One may consider the differential operator Ai as the covariant
derivative in the direction of ei.

For some applications one needs an explicit expression of the kind (1.42)
also in the general case. If spinor fields are involved, one has to introduce,
besides a local coordinate system in M, a tetrad field [40], namely to assign
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a tetrad ei(x) to the points of a region of spacetime. If one also assigns to
every point a choice of the gauge, one obtains a local section x→ s(x) of the
fiber bundle Sn. The existence of a global section is not assured. Of course,
π(s(x)) = x.

The group element (Λ, g) ∈ L×G represent the element of the structural
group that transforms s(x) into s and we have

ei = ek(x)Λ
k
i, Λk

i = ekµ(x)e
µ
i , (1.43)

Φ(s) = Σ(Λ−1)Σ(g−1)Φ(x), Φ(x) = Φ(s(x)). (1.44)

The variables (xλ,Λk
i, g) provide a new parametrization of the elements

s ∈ S and, by means of the formulas
(

∂

∂xλ

)

e

=

(

∂

∂xλ

)

Λ

+
∂ekν(x)

∂xλ
eνj

∂

∂Λk
j

,
∂

∂eµj
= ekµ(x)

∂

∂Λk
j

, (1.45)

we obtain from eq. (1.31)

Ai = eλi

((

∂

∂xλ

)

Λ

− ΓjkλΛ
k
l
∂

∂Λj
l
+ aaλA

L
a

)

. (1.46)

We have introduced the quantities

Γjkλ(x) = ejµ(x)e
ν
k(x)Γ

µ
νλ(x) + ejµ(x)

∂eµk(x)

∂xλ
, (1.47)

namely the connection coefficients in the anholonomic basis, also called the
spin connection coefficients. Note that the connection coefficients do not
transform as the components of a tensor under a change of the basis in the
tangent spaces. It follows from the metricity condition (1.30) that

Γkiλg
ij = Γkjλ = −Γjkλ = Γ

[kj]
λ . (1.48)

By means of the formulas

Λk
l
∂Σ(Λ−1)

∂Λj
l

= −2−1Σ(Λ−1)gkiΣ[ji], ALaΣ(g−1) = −Σ(g−1)Σa, (1.49)

we finally obtain

AiΨ = Σ(Λ−1)Σ(g−1)eλi

(

∂Ψ(x)

∂xλ
+ 2−1Γ

[jk]
λ Σ[jk]Ψ(x) − aaλΣaΨ(x)

)

. (1.50)
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The expression in the parenthesis is the covariant derivative on the section
s(x) and the preceding factors transform it into the covariant derivative in
the direction of ei at a generic point s.

From the commutation relation (1.33), we see that the covariant deriva-
tive has the correct Lorentz transformation property, namely

A[ik]AjΨ = F̂ l
[ik]jAlΨ − Σ[ik]AjΨ. (1.51)

1.7 A compact formalism

In the present Section we introduce some notations that permit us to write
the formulas of the preceding Sections in a very compact form. In this way
we simplify some calculations, but, at this stage, we do not introduce any
new mathematical or physical idea. We also write all the relevant formulas
using the concepts of differential geometry that do not refer to a particular
local coordinate system or to a local section of the fiber bundle. In the
following Chapter 2 we shall give a different, more general, interpretation of
this compact formalism and use it to introduce new physical ideas.

We have seen that the (possibly extended) bundle of Lorent frames is a
manifold Sn with dimension 10 + n, where n is the dimension of an internal
gauge group G. We have also seen that its most important geometric proper-
ties are described by the vector fields Ai, A[ik] and, if n > 0, Aa. We use for
all these fields a unified notation Aα, where α takes the values 0, . . . , 9 + n.

More precisely, the fields A0, . . . , A3 generate parallel displacements of
the tetrads along the directions of the tetrad vectors, A4 = A[32], A5 = A[13],
A6 = A[21] generate rotations around the spatial vectors of the tetrad, A7 =
A[01], A8 = A[02], A9 = A[03] generate Lorentz boosts along the same spatial
vectors and A10, . . . , A9+n generate the infinitesimal transformation of the
internal gauge group. If n = 1, in order to avoid a two digits index, we write
A• instead of A10.

The vectors Aα(s), α = 0, . . . , 9 + n are linearly independent and they
provide a basis in every tangent space TsSn, s ∈ Sn. By means of this basis,
one can identify in a natural way all the tangent spaces TsSn with a single
(10 + n)-dimensional vector space Tn.

The subspace of TsSn generated by the vectors A0(s), . . . , A3(s) is called
the horizontal subpace, while the subspace generated by the vectors A4(s), . . . ,
A9+n(s) is called the vertical subpace. The vertical subspaces are tangent to
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the fibers, while the horizontal subspaces define a connection in the principal
bundle Sn. We also consider these subspaces as subspaces of the vector space
Tn and we indicate them, respectively, by TH and TV . The last subspace can
be identified with the Lie algebra of the structural group. If n > 0, the
vertical subspace TV is the direct sum of the subspace TL generated by A[ik]

and the subspace TI generated by Aa.
The vector fields Aα can be considered as first order differential operators

and their commutators (Lie brackets) can be written in the form

[Aα, Aβ] = F γ
αβAγ . (1.52)

The quantities F γ
αβ = −F γ

βα, are called structure coefficients.
We also introduce in the space Sn the differential 1-forms ωβ, dual to the

vector fields Aα, defined by

i(Aα)ω
β = ωβ(Aα) = δβα, (1.53)

where i(X) is the interior product operator acting on the differential forms.
Their exterior derivatives are given by

dωγ = −2−1F γ
αβ ω

α ∧ ωβ. (1.54)

The exterior products of these 1-forms provide a basis in the space of
differential forms of higher degree. We say that a term containing the product
of dH forms of the kind ωi has horizontal degree dH , a term containing the
product of dL forms of the kind ω[ik] has Lorentz vertical degree dL and a
term containing the product of dI forms of the kind ωa has internal degree
dI . We use the notation (dH , dL, dI) to describe the partial degrees of a term.
The total degree is the sum of the partial degrees. These concepts are very
useful in the calculations.

From the Jacobi identity satisfied by the commutators (1.52) or consid-
ering the vanishing exterior derivation of eq. (1.54), we find the generalized
Jacobi identity

AαF
δ
βγ + AβF

δ
γα + AγF

δ
αβ − F η

αβF
δ
ηγ − F η

βγF
δ
ηα − F η

γαF
δ
ηβ = Jδαβγ = 0. (1.55)

We see from eqs. (1.11), (1.19), (1.33), (1.34) and (1.35) that the structure
coefficients coincide with the structure constants F̂ γ

αβ of the Lie algebra of
the extended Poincaré group P × G, with the exception of the coefficients
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F γ
ik, which give the anholonomic components of the torsion, curvature and

gauge field strength tensors defined by eqs. (1.37), (1.38) and (1.39).
The generalized Jacobi identity (1.55) represents, in a very compact form,

a large number of physically relevant formulas. In particular:

• Jaijk = 0 is the homogeneous set of the Maxwell or Yang-Mills equations;

• J
[mn]
ijk = 0 is the Bianchi identity for the curvature;

• J lijk = 0 is the Bianchi identity for the torsion or a symmetry property
of the curvature if the torsion vanishes;

• J baik = 0 represents the gauge transformation property of the Maxwell
or Yang-Mills field strength;

• J
[mn]
aik = 0 represents the gauge invariance of the curvature;

• J laik = 0 represents the gauge invariance of the torsion.

• Ja[ij]lk = 0 represents the tensor nature of the Maxwell or Yang-Mills
field strength;

• J
[mn]
[ij]lk = 0 represents the tensor nature of the curvature;

• J l[ij]lk = 0 represents the tensor nature of the torsion.

For other values of the indices we obtain the Jacobi identity for the structure
constants of the extended Poincaré algebra.

1.8 Connection, soldering, curvature and tor-

sion forms

If we introduce, as in Section 1.4, a local parametrization of Sn, starting from
the explicit formulas (1.9) and (1.31) for the vector fields Aα and from the
definition (1.53), we can compute the following explicit expressions of the
forms ωβ:

ωi = eiλdx
λ. (1.56)

ω[ik] = gkjeiµ(de
µ
j + eνjΓ

µ
νλdx

λ), (1.57)

ωa = χa −Da
b(g

−1)abλdx
λ, (1.58)
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where χa is the Maurer-Cartan form of G defined in Section 1.4. One can
show by means of eq. (1.1) that the expression (1.57) is antisymmetric in the
indices i, k. It is a useful exercise to show that eq. (1.54) is satisfied.

The one-forms ω[ik] and ωa are called the components of the connection
form, which takes its values in TV , namely in the Lie algebra of the structural
group. The one-forms ωi are called the components of the soldering form,
also called the canonical form, that takes its values in TH .

Other useful quantities defined in the literature on fibre bundles [25–28]
are the curvature form, a two-form taking values in TV , with components

Ω[ik] = −2−1F
[ik]
jl ω

j ∧ ωl = dω[ik] + 2−3F̂
[ik]
[jl][mn]ω

[jl] ∧ ω[mn], (1.59)

Ωa = −2−1F a
jlω

j ∧ ωl = dωa + 2−1F̂ a
bcω

b ∧ ωc, (1.60)

and the torsion form, a two-form taking values in TH with components

Ωi = −2−1F i
jlω

j ∧ ωl = dωi + 2−1F̂ i
[kl]jω

[kl] ∧ ωj. (1.61)

Note that these formulas, called structure equations agree with eq. (1.54).

1.9 Flat Minkowski spacetime and Poincaré

group

It is interesting to consider with more detail the simple case in which M is
the flat Minkowski spacetime. In a first treatment we disregard the internal
gauge group. Then we can choose a distinguished local frame, namely a dis-
tinguished point ŝ ∈ S, and extend it to a global Minkowskian coordinate
systems xµ in M. The holonomic components of the metric are constant
and equal to the anholonomic components and eq. (1.1) shows that the com-
ponents of the tetrad 4-vectors form a matrix of the orthochronous Lorenz
group, namely

eµi = Λµ
i. (1.62)

This means that the holonomous and the anholonomous bases in the tangent
spaces are related by Lorentz transformations. In the following we can replace
the greek indices by latin indices.

A general element s ∈ S can be labelled by the 4-vector x and the Lorentz
matrix Λ and it can be identified with the element (x,Λ) of the orthochronous
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Poincaré group P, with the usual multiplication law

(x,Λ)(x′,Λ′) = (x+ Λx′,ΛΛ′). (1.63)

The distinguished point ŝ corresponds to the unit element (0, 1).
The structural Lorentz group L is a subgroup of P and its action on

S = P is a right translation

(x,Λ) → (x,Λ)(0,Λ′) = (x,ΛΛ′). (1.64)

It is clear that, in the particular case we are considering, the whole group
P acts on S on the right and every element s ∈ S can be written in an
unique way as s = ŝh with h ∈ P. It follows that S is diffeomorphic to
P. It is important to remark, however, that this diffeomorphism depends on
the choice of ŝ and that the group P has a distinguished element, the unit,
while no a priori privileged element is present in S (see Section 2.2). The
infinitesimal right translations are generated by the vector fields Aα, which
form a basis of the Poincaré Lie algebra.

One can also consider the left translations s = ŝh → ŝh′h that can be
interpreted as changes ŝ → ŝh′ of the distinguished element ŝ. We indicate
by ALα the generators of the left translations. They are vector fields on the
group, but we can also interpret them as vector field on S, though this
interpretation depends on the choice of ŝ.

They commute with Aα and satisfy the commutation relations

[ALα, A
L
β ] = −F̂ γ

αβA
L
γ , (1.65)

(note the minus sign). They can be written in the form

ALα(s) = Dβ
α(h

−1)Aβ(s), s = ŝh, h ∈ P, (1.66)

where D(h) is the adjoint representation of P, which has the properties

AαD
β
γ(h) = Dβ

δ(h)F̂
δ
αγ, ALαD

β
γ(h) = F̂ β

αδD
δ
γ(h). (1.67)

We have the explicit formulas

Di
k(x,Λ) = Λi

k, D[ik]
[jl](x,Λ) = Λi

jΛ
k
l − Λk

jΛ
i
l,

D[ik]
j(x,Λ) = Dj

[ik](0,Λ) = 0, Dj
[ik](x, 1) = xiδ

j
k − xkδ

j
i . (1.68)
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From the definition of left translation or also from eqs. (1.9), (1.31) and
(1.66), one obtains

AL[ik] = gkjΛ
j
l
∂

∂Λi
l
− gijΛ

j
l
∂

∂Λk
l
+ xk

∂

∂xi
− xi

∂

∂xk
, ALi =

∂

∂xi
. (1.69)

In a flat spacetime one can give a clear definition of the energy-momentum
four-vector pi and the relativistic angular momentum tensor p[ik] of a system.
A more general situation is discussed in Chapter 8. In the framework of an-
alytical mechanics and of quantum theory, the quantities pi and p[ik] are, re-
spectively, the generators of the infinitesimal active translations and Lorentz
transformations. Note that the energy, namely the Hamiltonian, is given by
H = p0 = −p0 and it is the generator of the passive time translations. We
have seen that the passive transformations, namely the transformations of
the frame ŝ, are generated by the vector fields ALα and the corresponding
active transformations are generated by the vector fields −ALα.

Following the conventions of Section 1.7, it is natural to use also for
the quantities pi and p[ik] the compact notation pα, and to call them the
components of the 10-momentum. By replacing L by L×G and P by P×G,
one can treat in a similar way the case in which gauge fields are present,
but have a vanishing field strength. In this case one can define the (10 +
n)-momentum of a system and for α = a = 10, . . . , 9+n, the quantities pa are
interpreted as the charges corresponding to the infinitesimal transformations
of G and in particular p• is the electric charge.

The quantites pα, and the fields ALα, depend on the choice of the frame ŝ
in the same way. Since the fields Aα do not depend on ŝ, from eq. (1.66) we
obtain the transformation formulas

ŝ→ ŝh, ALα → Dβ
α(h)A

L
β , pα → Dβ

α(h)pβ. (1.70)

For infinitesimal transformations, we have

Aγpα = F̂ β
γαpβ. (1.71)

This important formula will be discussed and generalized in Chapter 8. We
have seen that the compact formalism can be extended to dynamical quan-
tities.

If we use the explicit form of the adjoint representation, we obtain the
usual Lorentz transformation properties of pi and p[ik] and in the case of
spacetime translations we have

ŝ→ ŝ(x, 1), pi → pi, p[ik] → p[ik] + xipk − xkpi. (1.72)
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We also obtain the transformation formula for the charges pa under a non-
commutative internal symmetry group.

If we consider a single spinless point particle situated at the origin of the
frame ŝ(x, 1), p[ik] vanishes in this frame and in the frame ŝ we have

p[ik] = xkpi − xipk, (1.73)

If, in agreement with the conventions discussed in Section 1.7, we define the
3 dimensional vectors

p = (p1, p2, p3), p′ = (p[32], p[13], p21]), p′′ = (p[01], p[02], p[03]), (1.74)

x = (x1, x2, x3), (1.75)

we can write
p′ = x × p, p′′ = x0p− p0x (1.76)

in agreement with the known elementary formulas.
A similar treatment can be given for a spacetime with constant curvature,

namely a de Sitter or an anti-de Sitter spacetime. In this case the Poincaré
group has to be replaced by the de Sitter or an anti-de Sitter group and the
vector fields Ai do not commute, but we have

[Ai, Ak] = 2−1F̂
[jl]
ik A[il], (1.77)

F̂
[jl]
ik = −ρ(δji δ

l
k − δjkδ

l
i), (1.78)

where the constant ρ is connected with the scalar obtained by contraction of
the Riemann curvature tensor by the relation

R = Ri
jikg

jk = −F
[ik]
ik = 12ρ. (1.79)

It is positive for a de Sitter spacetime and negative for the anti-de Sitter
spacetime. For the Minkowski space, we have ρ = 0.

The eqs. (1.12), (1.36) and (1.78) are equivalent to the formula

dωi = −gjkω
[ij] ∧ ωk, dω[ik] = −gjlω

[ij] ∧ ω[lk] + ρωi ∧ ωk. (1.80)
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Chapter 2

The general space S of the
(extended) inertial local frames

2.1 The basic geometric and topological stuc-

ture of the space S

In Chapter 1 the bundle S of Lorentz frames has been introduced as a useful
auxiliary tool, while the spacetime M was considered as the basic geometric
concept of physics. In the following, a theory based on a geometry of this kind
is called a normal theory or, more exactly, a theory with a normal geometry.
However, there are several arguments that suggest a change of perspective,
namely that S has a more direct physical interpretation, while M should
be considered as a mathematical construction, possibly justified only under
some assumptions, which might have an approximate character.

In the presentation of these ideas we shall follow essentially refs. [3–5].
Similar points of views, with various motivations, have been presented by
various authors [49–54]. Some of them are discussed with some detail in the
follwing Sections.

A first simple argument in favour of the new point of view is that many
physical observables have a vector or tensor nature and take a definite value
only when a local frame, namely a point of S is given. A point x ∈ M
does not convey enough information. Other arguments for choosing S as the
geometric arena of physical theories will be given in the Sections 2.2 and 2.4.

We propose to drop the assumption that S is a principal fiber bundle
with a connection and to endow it with a simpler structure suggested by the
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treatment given in Section 1.7 and justified by the operational discussion of
Section 2.2. Further assumptions will be added when necessary.

More precisely, we describe the geometric background of a physical theory
(including the gauge fields) by means of the (10 + n)-dimensional differen-
tiable manifold Sn and the 10 + n differentiable vector fields Aα linearly
independent at all the points s ∈ Sn. The physical meaning of these fields
given in Section 1.7 is only a useful suggestion. In Section 6.1 a slightly
modified interpretation is suggested.

As we have remarked in Section 1.7, the vector fields Aα permit us to
identify all the tangent spaces TsSn with a single (10+n)-dimensional vector
space Tn, namely they define on Sn a structure called absolute parallelism or
teleparallelism. It can be described as a trivialization of the tangent bundle,
namely a diffeomorphism between TSn and Sn × Tn

Adopting a more clear point of view, we define Tn as the vector space
composed of all the vector fields of the form A = bαAα, where the coefficients
bα are constant. Note that all the vector fields on Sn can be written in the
form bα(s)Aα(s) with variable bα(s) and that the elements of Tn are vector
fields of a particular kind, that we call fundamental vector fields. If A ∈ Tn
is a fundamental vector field we have A(s) ∈ TsSn and in this way one
establishes the isomorphism between Tn and TsSn. The physical properties
that charcterize the fundamental vector fields are discussed in Section 2.2.

We define the structure coefficients F γ
αβ by means of eq. (1.52) and the

differential one-forms ωβ by means of eq. (1.53). They satisfy the equations
(1.54) and (1.55), which have been discussed, in a particular context, in
Section 1.7. Also the dynamical quantities which form the components of
the (10 + n)-momentum (see Section 1.9), when they have an approximate
meaning in the general formalism, are indicated by the compact notation pα.

All the other properties of Sn, and in particular its structure of principal
fiber bundle with a connection, if it maintains an approximate validity, are
shifted from the realm of geometry to the realm of dynamics. For instance,
all the structure coefficients F γ

αβ should be considered as dynamical fields,
namely their values should be determined by the field equations and the
action principle. In the normal theories a dynamical role is recognized only
to the coefficients F γ

ik.
Also the equations (1.14) and (1.25), that determine the transformation

properties of the fields with respect to the Lorentz and internal symmetry
groups, should be considered as dynamical field equations, to be derived, as
the other field equations which contain the spacetime derivatives, from the
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action principle.
If we consider an arbitrary constant positive definite (10 + n) × (10 + n)

matrix Gαβ and we consider its elements as the components of a metric
tensor in the basis defined by the vector fields Aα, the manifold Sn acquires
a structure of Riemannian manifold. One can easily see that the topology
and the uniform structure defined by this metric do not depend on the choice
of the matrix G. In particular, we can introduce without any ambiguity the
concepts of completeness of the space Sn and of boundedness of a vector
field. A vector field bαAα is bounded if all its components bα are bounded
functions.

These concepts are very useful, because a theorem proven by Palais [55]
assures that, if Sn is a complete Riemannian manifold, every bounded differ-
entiable vector field A generates a one-parameter group of diffeomorphisms
of Sn onto itself, that we indicate by exp(τA), where τ is a real parameter.
More in general, a Lie algebra of bounded vector fields generates a right ac-
tion of the corresponding simply connected Lie group on Sn. The physical
meaning of the completeness property is discussed in Section 2.5.

2.2 The operational interpretation and the

relativity principle

Important ideas about the geometric structure of the space S and the role it
plays in physical theories follow from an operational analysis of the geometric
concepts of physics given in refs. [1, 2]. The operational point of view has
been discussed by P. W. Bridgman [56] and an accurate presentation, which
has strongly influenced our considerations, is given by R. Giles in ref. [57].

Of course, nobody is obliged to adopt the operational point of view. Any
methodological choice is valid as soon as it helps to put some order in the
physical experience [58]. We shall see that the operational analysis suggests
several very interesting physical ideas.

According to ref. [57], a physical theory is a mathematical theory with
an operational interpretation of some (not necessarily all) of its concepts
(terms and relations). It is important to remember that some mathematical
concepts may have no direct operational interpretation. For instance, spinor
and charged fields are not observable [59,60], but they are very useful in the
formulation of a field theory.

28



An operational interpretation is based on physical (laboratory) opera-
tions. What is relevant, however, is not the single, concrete, operation, but a
set of prescriptions, called a procedure, clearly stated in a specific document,
which describes exhaustively how the operations have to be performed. For
instance, in the description of a procedure it is not allowed to point the finger
at some physical object. When this point of view is is rigorously accepted,
we speak of strictly operational interpretation.

In order to specify the spacetime conditions, namely where and when the
operation is performed and which has to be the velocity and the orientation
of the instruments, the procedure must refer to some pre-existent physical
object, chosen by the experimenter in any single case, which determines a
“reference frame”. In order to avoid confusion with the mathematical concept
of reference frame, we use the term situation. A procedure does not specify
how the situation has to be chosen. As we shall discuss in Section 2.6, it
may be difficult to separate the geometric meaning of a situation from other
physical information it necessarily contains.

The simplest kinds of procedures are the measurement procedures, which
give a numerical result, and the transformation procedures which have the
aim of building a new situation starting from a pre-existent one. More com-
plicated procedures will be discussed in Section 3.4. It is convenient to call a
measurement a class of equivalent measurement procedures that give (statis-
tically) the same results in all the situations and, similarly, to call a transfor-
mation a class of equivalent transformation procedures that act (statistically)
in the same way on the situations (a more precise definition is given in [2]).

One can define in a natural way the composition of two transformations,
which is again a transformation, and of a transformation and a measurement,
which is a new measurement. In agreement with our previous conventions,
we write on the right the transformation performed later. In other words, the
transformations form a semigroup acting on the right on the situations and
on the left on the measurements. Other algebraic properties of the spaces of
measurements and transformations are discussed in ref. [2].

It is important to remark that there is no possible strictly operational
prescription for choosing a situation, unless a preceding situation is available.
This means that the situations have no strict operational interpretation. The
transformations have an operational interpretation and it is proposed in ref.
[2] that the geometric concepts of physics should be defined in terms of
transformations.

We see that the operational point of view leads to a relational geometry,
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in which the important concepts are not the frames (or the events), but the
relations between them.

In the classical formalism we are considering, the manifold S is a model
for the space of all the situations. Some problems raised by this definition
are discussed in Section 2.6. We are considering the case n = 0, since the
extended manifold requires a more delicate discussion.

Since the elements of S have no strict operational interpretation, the
physical laws cannot privilege, and not even single out, any of them. It
follows that all the points of S, namely all the local inertial frames, have to
be treated, a priori in the same way. This is a statement of the relativity
principle, that appears as a consequence of the requirement that a physical
theory must have a strict operational interpretation.

If one accepts this requirement, the relativity principle has to be consid-
ered as a part of the very definition of physics. Statements that privilege
a particular local inertial frame do not belong to physics, but, possibly, to
other sciences [23].

It is necessary to specify that only a priori equivalence of the inertial
local frames is required. After the measurement of a field, the frames in
which it takes a certain value may be privileged. This means that if one
finds a seeming violation of the relativity principle, one has to find a field
responsible for it. Of course, this field must have its own dynamics.

Originally, the relativity principle was restricted to pairs of frames which
have different velocities. The formulation given above extends the principle to
pairs of frames with different location in spacetime and different orientation in
space. This general interpretation agrees with the ideas discussed in Section
2.4.

In the present notes we deal mainly with classical field theories, modelled
on the Maxwell’s and Einstein’s theories, with the spacetime M replaced by
S. In particular, we assume that the measurement and the transformation
procedures do not affect the state of the system. Some remarks about the
limitations of this approach are given in Section 2.6. Then we can define a
state of the system (including its time evolution, as in the Heisenberg picture
of quantum mechanics), as a given solution of the field equations.

A measurement defines a scalar fields on S, the value of the field at the
point s being the outcome of the measurement performed in the local frame s.
We are not assuming that all the scalar fields represent operationally defined
measurements, but it seems natural to assume that the structure coefficients
F γ
αβ are measurable fields.
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A transformation induces a mapping of S into itself, that is assumed to
be differentiable. We also assume the existence of one-parameter semigroups
of transformations corresponding to mappings of the kind s → s exp(τB)
with τ ≥ 0. The vector field B describes an infinitesimal transformation.

Our main assumption is that the vector fields that describe infinitesimal
transformations generate the 10-dimensional linear subspace T of the much
larger space of all the vector fields in S. The elements of T are called funda-
mental vector fields and define the absolute parallelism of S, as it is explained
in Section 2.1.

Only the vector fields belonging to a subset T + ⊂ T generate a semigroup
of transformations as we discuss in Section 3.1. The vector fields Aα form a
basis of T , but do not necessarily belong to T +. Of course, one can introduce
a (global) change of basis, but a local (gauge) change of basis, different in the
various tangent spaces TsS, is not admitted by our operational interpretation
(see Section 3.8).

In order to justify our assumptions, we have to explain why a semigroup
of diffeomorphisms of the kind

exp(τbα(s)Aα(s)), (2.1)

where bα(s) are suitably chosen nonconstant measurable scalar fields, cannot
describe semigroup of transformations. Otherwise, we could define infinites-
imal transformations represented by the vector field bαAα not belonging to
T and the absolute parallelism could not be defined in an unique way.

One may try to consider the transformation (2.1) as the composition of
many transformations corresponding to small values of τ ; in every step one
measures the values of bα(s) and then one performs the transformation as if
these quantities were constant. One must remark, however, that it takes some
minimum time to measure the values of the scalar fields bα(s) and therefore
the steps cannot be too small. As a consequence, we are authorized to assume
that in the limit τ → 0 the mapping (2.1) can represent a transformation
only if the fields bα(s) are numerical constants known in advance.

Note that we had to assume that it takes some minimum time to
perform a measurement. The generalization of this important principle
to all the physical operations is discussed in Sections 2.4 and 3.1.
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2.3 The spacetime coincidence

In a footnote of his fundamental article on General Relativity [61] Einstein
wrote: “We assume the possibility of verifying simultaneity for events im-
mediately proximate in space, or, to speak more precisely, for immediate
proximity or coincidence in spacetime, without giving a definition of this
fundamental concept”.

In order to give a formal interpretation to this sentence, we consider a
set O of “objects” and we assume that one can define operationally in a
unique objective way an equivalence relation between them called spacetime
coincidence. The equivalence classes are the elements of the spacetime M,
namely the events.

The elements of O are characterized by geometric properties and possibily
also by dynamical properties, like energy, momentum, mass and so on. The
interplay of geometric and dynamical quantities in theories with a modified
spacetime has been discussed by several authors [62, 63] and finds perhaps
its origin in refs. [64, 65].

If we disregard provisionally the dynamical properties, it is natural to
identify the set O with the manifold Sn. If it has a structure of fibre bundle
as we have assumed in Chapter 1, the fibers are the equivalence classes for
the relation of spacetime coincidence and Einstein’s assumption is satisfied.

The full structure of principal fibre bundle is not necessary for a space-
time interpretation of the theory. We may more simply assume that the
equivalence classes are (6 + n)-dimensional differentiable submanifolds of Sn
and that, with a suitable choice of a basis in Tn, the vector fields Aα with
α = 4, . . . , 9 + n are tangent to them. The Lie bracket of two of these fields
is also tangent to the equivalence classes and we obtain the condition

F i
αβ = 0, α, β = 4, . . . , 9 + n, i = 0, . . . , 3. (2.2)

One may ask if the condition (2.2) is sufficient for a spacetime inter-
pretation. It means that the subspaces of TsSn generated by the vectors
A4(s), . . . , A9+n(s) (we continue to call them “vertical” subspaces) form an
integrable distribution, namely they satisfy the condition of the Frobenius
theorem [25, 26] which assures the existence of a foliation of S. This means
that for every point s ∈ S there are connected (6− n)-dimensional subman-
ifolds, called integral manifolds containing s and tangent to the subspaces
that form the distribution. One of these submanifolds contains all the others
and is called the leaf containing s.
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The same problem can also be treated by means of the forms ωα. The
vertical subspaces can be defined by means of the differential system

ωi = 0. (2.3)

These differential forms must vanish when restricted to an integral manifold
and their exterior derivatives

dωi = −2−1F i
αβω

α ∧ ωβ (2.4)

must have the same property. In this way we obtain again the condition
(2.2), which is the integrability condition for the differential system (2.3).

We can consider the leaves as the equivalence classes of a relation of
spacetime coincidence and consider them as the elements of a set M. We
indicate by π the projection of S on M and we say that a set I ⊂ M is open
if its inverse image π−1(I) is open. With this definition M is a topological
space, but the Hausdorff separation axiom is not necessarily satisfied.

A minor problem is that, at least if S is a bundle of frames, every equiva-
lence class (fiber) has two connected components containing left-handed and
right handed tetrads. As a consequence it is composed of two leaves and
every point of the spacetime is obtained twice. Alternatively, one can say
that one obtains a double covering of M.

One can also try to define a structure of differentiable manifold on M. In
the proof of Frobenius’ theorem one shows that in a neighborhood of every
point of s ∈ Sn one can find a cubic coordinate system ξα with ‖ξα‖ < d,
in such a way that the surfaces (slices) defined by fixing the values of the
four coordinates ξ0, . . . , ξ3 are integral manifolds and therefore individuate
a point of M. From a local point of view we can consider the functions
ξ0, . . . , ξ3 as local spacetime coordinates and say that, as a consequence of
eq. (2.2) the theory has a local spacetime interpretation.

From a global point of view, the functions ξ0, . . . , ξ3 provide a local coor-
dinate system of M only if different values of them correspond to different
points of M, namely if different slices belong to different leaves. In this case
we say that the cubic coordinate system is regular. If near every point of
S one can find a regular cubic coordinate system, one can consider M as a
differentiable manifold and a global spacetime interpretation is established.

Unfortunately, often this regularity condition is not satisfied. It is useful
to illustrate the situation by means of a simple example. We assume that
the Poincaré group P acts on S on the right transitively, but not freely. The
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infinitesimal transformations are described by the vector fields Aα and the
structure coefficients are the structure constants of the Poincaré Lie algebra,
so that the condition (2.2) is satisfied. The manifold S is a homogeneous
space and is described by the quotient H\P where H is the stabilizer of a
given element ŝ ∈ S, a closed subgroup of P.

We assume that H is the Abelian discrete subgroup containing the ele-
ments

exp
(

pA[01] + (pa+ qb)A2

)

, (2.5)

where p and q are integers, a and b are real and a−1b is irrational. The
numbers of the form pa + qb are dense on the real line and one can find the
sequences {pr} and {qr} with the properties

lim
r→∞

pr = +∞, lim
r→∞

(pra+ qrb) = 0. (2.6)

We obtain

lim
r→∞

ŝ exp
(

prA[01]

)

= lim
r→∞

ŝ exp (−(pra+ qrb)A2) = ŝ (2.7)

All the elements of this sequence belong to the same leaf, but not to the
same slice, since pra+ qrb 6= 0. It follows that the regularity condition is not
satisfied.

This example shows that there is no hope to assure the existence of a
global space-time interpretation by means of local conditions on the struc-
ture coefficients. Since we are mainly interested in the study of local field
equations, we shall not consider this problem any more.

The equivalence relation considered above can be called primary local
spacetime coincidence, because it is defined directly by means of the fun-
damental vector fields Aα. In Chapter 7 we define a more general concept
of secondary local spacetime coincidence, that also depends on the structure
coefficients.

If n > 0, one can also define the weaker concept of physical equivalence of
extended frames. We say that two extended frames are physically equivalent
if they differ by a gauge transformation, namely they belong to the same
fiber of Sn considered as a principal fiber bundle with base S and structural
group G. The whole treatment given above can be repeated in this different
context and we find the necessary condition

F α
ab = 0, a, b = 10, . . . , 9 + n, α = 0, . . . , 9. (2.8)
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2.4 The equity principle, the minimum time

principle and the fundamental length

Another argument in favour of the use of the space of frames S in the for-
mulation of field theories has been pointed out by Lurçat [49, 50] in 1964.
At that time a large part of the research in elementary particle physics was
devoted to the relation between mass and spin described by “Regge trajec-
tories” [66] and it was realized that spin is not an “unessential complication”
and has a dynamical role.

It was suggested that energy-momentum and spin are equally important
and should be treated on the same footing. As a consequence, a unified
treatment of spacetime translations and rotations was desirable. This ar-
gument suggested a formalism in which quantum fields are defined on the
Poincaré group, that, as we have shown in Section 1.9, can be identified with
the bundle of the Lorentz frames of the Minkowski spacetime.

These ideas were suggested by strong interaction physics, but we apply
them to the microscopic physics of space-time and gravitation. Also the
ideas of string theory, one of the most popular candidates for the solution
of the problems of quantum gravity, had their origin in the theory of strong
interactions.

From the point of view of the space S, vertical and horizontal vectors,
which represent Lorentz transformations and (parallel) translations, should
be treated on an equal footing, but this is not compatible with the structure of
principal bundle. The treatment given in Chapter 1 shows that a considerable
part of the geometric concepts presented there does not distinguish between
vertical and horizontal vectors and we have employed some effort in order
to put in evidence these aspect. This is particularly evident in the compact
formalism of Section 1.7.

We propose the term equity principle for the idea that mass and spin,
translations and rotations, horizontal and vertical subspace should be
treated on an equal footing. There is no operational justification for
this principle as, for instance, for the relativity principle (see Section 2.2).
In fact, spacetime translations and Lorentz transformations have different
operational interpretations.

Also the space and time translations have different operational defini-
tions, but relativity theory treats them in a symmetric way, in the sense
that the Lorentz group has an irreducible action on the four-vector space.
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In Chapter 3 we implement the equity principle by introducing a group that
acts irreducibly on the space T . This means, in particular, that the vertical
and the horizontal subspaces cannot be invariant.

The equity principle has mainly an heuristic value, namely it is useful
for the construction of new theories, to be compared with experiments. It
is known that after pruning a fruit tree, it grows stronger and it gives more
and better fruits. A similar occurrence has been observed several times in
the history of physics, the best known examples being the absolute time in
relativity and the electron orbits in quantum atomic physics. It is possible
that dropping the assumptions that spoil the symmetry between vertical and
horizontal vectors can help in the treatment of the problems that affect the
theories of spacetime and quantum gravity.

As it is discussed in Section 2.3, the vertical subspace is strictly related
to the idea of spacetime coincidence. If the equity principle is accepted, the
absolute character of the space-time coincidence, a fundamental assumption
of General Relativity, has to be abandoned.

One should also remark that translations and rotations are described,
respectively, by a length and by an adimensional parameter (angle or veloc-
ity). It follows that a symmetric treatment requires the introduction of a
fundamental lenght ℓ, in the same way as the introduction of a fundamental
velocity c is necessary for a symmetric treatment of space and time in special
relativity. The introduction of a fundamental length in the classical theory
of gravitation should help to eliminate the singularities that appear in the
black hole and in the big bang solutions.

We have to discuss the relation between the fundamental length ℓ appear-
ing in a (still hypothetic) modified classical theory of gravity and the Planck
length

ℓP = (h̄G)1/2, (2.9)

which appears in all the attempts to quantize General Relativity. If ℓ≫ ℓP ,
some (not yet observed) effects of quantum gravity could be masked by the
effects of ℓ. However, we think that one should find some reason why ℓ = νℓP ,
where ν is a constant of the order of one.

One could consider the modified classical theory as an approximation of
the quantum theory in a situation in which the effects of h̄ can be disregarded,
but the effects of ℓP are still present. For instance, if one considers parti-
cles with an extremely large energy-momentum dispersion, the spacetime
uncertainty introduced by ℓ could be more important than the uncertainty
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introduced by the Heisenberg relations.
From a more formal point of view, one could remark that in a classical

theory ℓ and G are two independent parameters and that in many cases a
classical system can be quantized only if a relation between its parameters
and h̄ is satisfied [67, 68]. The simplest example is given by a classical spin
system described by a phase space given by 2-dimensional sphere with a
symplectic form proportional to the rotation invariant element of area and
normalized in such a way that the total area is a. The classical system makes
sense for any positive value of the constant a, which has the dimension of an
action, but quantization is possible only if a is an integral multiple of 2πh̄.
The relation ℓ = νℓP could have a similar origin. Further suggestions are
given in Section 4.5.

In another scenario, the parameters ℓ, G and h̄ are independent and the
quantized theory has a perturbative expansion in the adimensional parame-
ter Gh̄ℓ−2 (of course for ℓ > 0), but a singularity appears when the parameter
reaches a value of the order of one. We are not proposing a quantum theory
of gravitation, but we only want to show that a classical theory of gravitation
containing a fundamental length is not a priori wrong. With a bit of imagi-
nation, one could find in this way an explanation for the difficulties found in
the quantization of a normal gravitational theory with ℓ = 0.

We have assumed that G is a fundamental constant and that the classical
theory contains another fundamental constant ℓ with the dimension of a
length. A function of these constants has the dimension of an action and, as
we have discussed above, it must have some connection with the fundamental
constant h̄ introduced by quantization. In this situation, we say that the
classical theory is “prepared” for quantization.

However, several authors [69–71] have proposed theories with variable G.
These theories have not been confirmed experimentally, but they have several
interesting features and deserve a serious consideration. If G is a variable,
and ℓ is the only fundamental constant (besides the velocity of light), the
classical theory is not “prepared” for quantization unless the fundamental
constant ℓ, or some power of it, has the dimension of an action. We shall
discuss further this argument in Section 6.3.

The analogy between translations, rotations and Lorentz boosts implies
the analogy between velocity, angular velocity and acceleration. Since in rel-
ativistic theories there is an upper bound to the velocity, the equity principle
suggests the existence of upper bounds of the order of ℓ−1 to the angular
velocity and the acceleration. A maximal acceleration has been suggested,
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with various motivations, by many authors [7, 14, 72–77]. A more detailed
discussion is given in Section 3.1 and in Chapter 8.

The same concepts can be formulated in a different way. The existence of
a maximal velocity means that it takes a minimum time to perform a space
translation. The equity principle implies that it also takes a minimum time
to perform rotations and boosts. We have already suggested in Section 2.2
that it takes a minimum time to perform measurements. It is natural to
formulate a minimum time principle requiring that it takes a minimum
time to perform any physical operation.

We assume that mathematical operations can be performed in an arbitrar-
ily short time. In particular, we do not apply the minimum time principle to
gauge transformations, usually considered as a purely mathematical change
in the description of physical phenomena. An investigation of problems of
this kind requires an interaction between physics and inforamtion theory,
that we are not prepared to tackle.

2.5 Dynamical variables and symmetry prop-

erties

The dynamical variables of a classical field theory on the space Sn are the
vector fields Aα and a set of scalar fields ΨU that we consider as the elements
of a one-column matrix Ψ. The vector fields describe the geometry and the
scalar fields represent “matter”. If n > 0, the internal gauge fields are, by
convention, considered as geometric fields.

It is not necessary to consider tensor fields in the manifold Sn, because
they are described in terms of scalar fields, namely their components with
respect to the frame defined by the vector fields Aα. For the same reason the
use of differential forms can be avoided, but it often permits more elegant
and compact formulas.

According to the relativity principle discussed in Section 2.2, the field
equations cannot privilege any local frame and must be invariant with respect
to general transformations of the local coordinates of Sn or, in other words,
they must be invariant under diffeomorphisms of Sn.

This condition is automatically satisfied if we use the coordinate-free for-
malism of differential geometry. We assume that the field equations have a
local character and that they consist of algebraic relations involving, at any
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point of Sn, the scalar fields, the structure coefficients and their derivatives
expressed by means of the differential operators Aα.

A solution determines, besides the values of the vector and scalar fields,
the structure of Sn as a differentiable manifold, in particular its topology. We
say that a solution is complete if the metric space Sn is complete (see Section
2.1). If Sn is not connected, we assume that its connected components do
not describe different noncommunicating universes and that the values of
the fields on one components already describe a solution completely. Then,
one can assume that Sn is connected. For instance, one can consider only
left-hande tetrads, disregarding the right-handed ones..

Given a complete solution, one can consider an open proper submanifold
of Sn, describing a new solution, that we may call a subsolution. If Sn is
connected, this submanifold cannot be open and closed at the same time
and therefore it cannot be complete. It follows that a complete solution
cannot be a subsolution of a larger connected solution. Note that it certainly
has a completion, but it is not necessarily a manifold. From the physical
point of view, a complete connected solution is intended to give a description
of the whole universe. If a noncomplete solution cannot be described as a
subsolution of a complete solution, it means that it has singularities [33].

A solution is called constant if all the scalar fields ΨU and all the struc-
ture coefficients are constant. It follows from eq. (1.55) that the structure
coefficients are the structure constants of a Lie algebra that generates a sim-
ply connected (10 + n)-dimensional Lie group Pn. If the solution is also
connected and complete, this group acts transitively on Sn, which is diffeo-
morphic to the homogeneous space H\Pn, where H is a discrete subgroup of
Pn. A constant solution is often interpreted as a vacuum state of the theory.

An example of field equation is eq. (1.55), which is always valid. It is
invariant with respect to all the changes of basis in the space Tn, namely with
respect to the group GL(10 + n,R) acting on the Greek indices. In general,
the other field equations and the Lagrangian form that generates them have
a different symmetry group F which transforms the fields according to the
formulas

Ψ → S(k)Ψ, Aα → (C−1)βα(k)Aβ , ωα → Cα
β(k)ω

β, (2.10)

where k ∈ F and S(k), C(k) are linear representations of F . The repre-
sentation C is real and one can consider it as acting on the vector space
Tn.
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If we indicate by κ an element of the Lie algebra of F , and by S(κ)
and C(κ) the representations of the Lie algebra corresponding to the repre-
sentations of the group, the infinitesimal transformations of the dynamical
variables are given by

δΨ = ζS(κ)Ψ, δAα = −ζCβ
α(κ)Aβ, δωα = ζCα

β(κ)ω
β. (2.11)

The group F may contain elements that do not act on Tn, for instance
the isotopic spin transformations and other transformations that act on the
flavour indices. They form a closed invariant subgroup K ⊂ F which is the
kernel of the representation C(k). The quotient group FG = F/K is the
geometric symmetry group and C(k) can be considered as a faithful repre-
sentation of it. In the simplest cases we have F = FG ×K.

In all the cases we shall consider FG contains the Lorentz group L that
does not act on the subspace TI and possibly the internal gauge group G that
does not act on the subspaces TH and TL. The action of the Lorentz group
on the subspaces TH and TL can be written in the form

Ai → (Λ−1)kiAk, A[ik] → (Λ−1)ji(Λ
−1)lkA[jl] (2.12)

and the corresponding infinitesimal transformations are given by

δAα = −2−1ζ [ik]F̂ β
[ik]αAβ, δωα = 2−1ζ [ik]F̂ α

[ik]βω
β,

δΨ = 2−1ζ [ik]Σ[ik]Ψ. (2.13)

We see that the subspaces TH , TL and TI are invariant and the repre-
sentation C is reducible. A possible mathematical formulation of the equity
principle (see Section 2.4) is to introduce a larger group FG and to require
that the representation C, restricted to TH ⊕ TL (still assumed to be invari-
ant) is irreducible, so that there is no invariant definition of the horizontal
and vertical subspaces. We shall treat this problem in Chapter 7. One may
invent more complicated symmetry group, but we do not see any physical
motivation.

A classification of the possible groups FG containing the Lorentz group
has been given in ref. [6], but it was realized later that the number of in-
teresting solutions is considerably reduced by requiring the existence of an
invariant cone in the tangent spaces of S, as it is discussed in Chapter 3.

As we have already remarked, a different kind of symmetry of the field
equations is given by the diffeomorphisms of the manifold Sn. An infinites-
imal diffeomorphism is generated by a vector field B and its action on the
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fields is described by the Lie derivative L(B). The action on scalar and vector
fields and on the differential forms is given by [25, 26]

L(B)Ψ = BΨ, L(B)A = [B,A], L(B)ω = i(B)dω+di(B)ω. (2.14)

A diffeomorphism acting on the manifold Sn and on the vector and scalar
fields transforms a solution into a physically equivalent one, namely it is a
gauge transformation. The usual gauge transformations of a normal theory
are described by the right action on the fibers of an element of the structural
group that can depend on the fiber. In the general theories we are considering
all the diffeomorphisms have to be considered as gauge transformations.

The most general infinitesimal symmetry transformation is described by
a pair (B, κ), where κ belongs to the Lie algebra of F and is given by

δΨ = ζ(BΨ + S(κ)Ψ), δAα = ζ([B,Aα] − Cβ
α(κ)Aβ). (2.15)

It is important to avoid any confusion between the symmetry group of
the field equations and the symmetry group of a given solution. A pair (B, κ)
describes a symmetry of a solution if δΨ = 0 and δAα = 0. If we require only
the second equality, we obtain the symmetry group of the geometric aspects
of the solution. This is the symmetry group of a theory dealing with some
matter fields in a fixed geometric background. Some classical and quantum
theories of this kind are treated in ref. [17] and in Chapter 11.

It is interesting to consider solutions in which Sn is a bundle of frames.
An element of the structural group defines a diffeomorphism of Sn, which in
general affects the vector fields Aα. Only if one can compensate this effect by
means of a transformation belonging to FG, one obtains an element of the
symmetry group of the geometry of a solution. For instance, an infinitesimal
Lorentz transformation of the kind (2.13) combined with the infinitesimal
diffeomorphism generated by B = 1/2ζ [ik]A[ik] gives δAα = 0. A similar
argument holds for the space inversion.

2.6 Critical remarks

It is evident that there is a serious gap between the operational approach dis-
cussed in refs. [1,2] and summarized, with several simplifications, in Section
2.2 and the geometric structure described in Section 2.1. We do not even try
to fill this gap, but we think that it is useful to point out some of its aspects.
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It looks more and more probable that understanding the very small scale
features of the geometric concepts requires a paradigm shift [78] involving
several aspects of science. We like to think that the considerations given
in the present notes give a small contribution in this direction, but much
more work is necessary, expecially concerning the quantum aspects of the
problem. The point of view of ref. [2] is more radical, but it is very difficult
to formulate in that way a sufficiently rich amount of physical knowledge.

A first simplification present in our approach is to disregard the casual
features present in every physical operation, in particular the experimental
errors. They, far from being a nuisance, provide an operational justification
for the topological concepts of the theoretical models, as it is explained in ref.
[57]. The connection between experimental uncertainties and the topological
concepts has been pointed out by Poincaré one century ago [79].

By allowing the presence of casual choices in the description of a proce-
dure, one can endowe the varions spaces of procedures with a structure of
convex set, similar to the structure of the space of the mixed states in quan-
tum mechanics. We do not use in the following this very useful structure.

A second problem is given by the doubts raised by the interpretation
of the manifold S as the collection of all the possible local inertial frames.
The local frames, called more exactly “situations” in ref. [2], are defined
by material objects that inavoidably interact with each other and with the
physical objects under investigation. It is clearly impossible to realize all of
them. One could define S as the collection of all the “potential” local frames,
but it is difficult to understand what this means.

It may be useful to turn to a fiction, namely assume that the local frames
are defined by a very “thin” kind of idealized matter that interacts apprecia-
bly only with the measuring instruments, in order to transmit to them the
geometric informations. If this fiction represents a good approximation, we
say that the (classical or quantum) theory has a classical geometry. However,
it is inavoidable to take into account:

• the gravitational field generated by the objects that define the frames;

• their quantum properties that do not permit an exact determination of
their positions and of their velocities.

The gravitational field can be disregarded if the mass of the object that
defines the reference frames is sufficiently small and the quantum effects are
not important if this mass is sufficiently large. Only in physical situations
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in which one can choose a mass that satisfies both these conditions one can
adopt a classical geometry. Otherwise, one enters the realm of quantum
geometry, namely of quantum gravity. Quantum frames have been discussed
in refs. [18, 80–82].

A third problem concerns the concept of state. In atomic or particle
physics a state is defined operationally by a preparation procedures, for in-
stance a suitable instrument produces a beam of atoms with given quantum
numbers. Alternatively, one can take a large set of atoms, measure a com-
plete set of observables and choose the atoms that have given the required
outcomes. It is clear that these methods do not work when one is investigat-
ing a large part of the universe. Other problems arise if one consider with
more detail the interpretation of quantum mechanics [83].

Actually, one can formulate a physical theory only in terms of observables
(measurement procedures) and relations between them. This is the point
of view adopted in refs. [1, 2]. Some functions of the concept of state are
transferred to the concept of situation. Instead of measuring the observables
in various different states, one measures them in various randomly chosen
situations and performs a statistical analysis of the outcomes. This is possible
because we live in a very large universe and we can choose an arbitrarily large
set of situations separated is space and in time. Then, if one likes, one can
introduce the states as functionals defined on the space of measurements.

This merging of the concept of state and the concept of local frame in the
concept of situation, is, in our opinion, a probable feature of a future theory
of physical geometry. The merging of different operationally defined concepts
when one enlarges their range of application is a general phenomenon ana-
lyzed in ref. [56]. The best known example is the merging of the operational
definitions of energy and frequency when one applies them to microscopic
physics.

Since we are dealing with classical field theories, we can freely define a
state as a solutioon of the field equations, as we have done in Section 2.5. The
outcomes of all the observables measured in arbitrary local frames are given
by the values taken by the fields. This is possible in a classical theory, since
all the observables are compatible and their measurement does not affect the
state of the system.

We think that it is correct to develop, as we are doing in the present notes,
the drastically simplified classical scheme based on the manifold S, even if
it can be criticized from a methodological point of view, as soon as it can
be used to formulate useful physical ideas [58]. A similar and perhaps more
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severe criticism applies to the classical field theories based on the spacetime
manifold M.
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Chapter 3

Feasibility of infinitesimal
transformations and geometric
symmetry groups

3.1 A wedge T + in the vector space T

In Section 2.2 we have introduced the n-dimensional vector space T generated
by its subset T + ⊂ T which contains all the vector fields that describe feasible
infinitesimal transformations, namely semigroups of operationally defined
transformations. Note that not all the elements of T belong to T +. For
instance, the vector field −A0 generates time translations in the past, which
cannot be realized. In other terms, one cannot build a situation (local frame)
in the past. The properties of T + have been discussed in refs. [7, 11, 12, 14].

It is clear that T + is dilatation invariant and we also assume that it is
closed. If A,B ∈ T +, we have [84]

lim
k→∞

(

exp(k−1τA) exp(k−1τB)
)k

= exp(τ(A +B)) (3.1)

and we see that A + B generates a semigroup of feasible transformations,
namely A + B ∈ T +. It follows that T +, besides being dilatation invariant,
is convex, namely it is a wedge [7, 11]. Since it generates the whole vector
space T , it has a nonempty interior.

A cone is a wedge that does not contain straight lines. If T + is not a
cone, the linear subspace T +∩−T +, that contains the reversible infinitesimal
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transformations, has positive dimension. We consider two vector fields A,B
belonging to this subspace. Since A,B,−A,−B ∈ T +, from the formula [84]

limk→∞ (exp(k−1τA) exp(k−1τB) exp(−k−1τA) exp(−k−1τB))
k2

= exp(τ 2[AB]), (3.2)

we see that the commutators [AB] and [BA] generate semigroups of feasible
transformations. It follows that [AB] ∈ T +∩−T + and this subspace defines
an involutive distribution of subspaces in the tangent spaces of S.

It is convenient to write a generic vector of T + in the form

B = bαAα = biAi + 2−1b[ik]A[ik]. (3.3)

We also introduce the 3-dimensional vectors

b = (b1, b2, b3), b′ = (b[32], b[13], b[21]), b′′ = (b[01], b[02], b[03]). (3.4)

In the normal theories all the Lorentz transformation and the spacetime
translations belonging to the closed future cone are feasible, namely T + is a
wedge defined by the inequality

b0 ≥ ‖b‖, (3.5)

while b′ and b′′ are arbitrary. It follows that

T + ∩ −T + = TV . (3.6)

Note that eq. (2.2), that permits a local spacetime interpretation, is a con-
sequence of the structure of T +.

One may say that in a normal theory it takes some time to perform a
space translation, but it takes no time to perform a rotation or a Lorentz
boost. Of course, it takes no time to perform internal gauge transformations.

3.2 The Lorentz invariant cone T +

Assuming m = 0, namely disregarding the internal gauge transformations, if
we want to satisfy the equity and the minimum time principles (see Section
2.4), a nonvanishing element of T + must have b0 > 0, since all the physical
operations “take some time”. It follows that T + is a closed cone with a
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nonempty interior and we call it the feasibility cone. We say that a theory
of this kind has a modified geometry. In the presentation of this argument
we follow refs. [7, 11, 14].

In order to determine the structure of T +, we have to assume some sym-
metry property and a natural requirement is that, as in the normal theories,
it is symmetric under the proper orthochronous Lorentz group L = SO↑(1, 3).
More precisely, we write an element of T + in the form (3.3) and we require
the invariance under the Lorentz transformations

bi → Λi
kb
k, b[ik] → Λi

jΛ
k
lb

[jl]. (3.7)

If T + contains an element with coordinates (b0,b,b′,b′′), it contains also
the element with co-ordinates (b0, 0, 0, 0), which belongs to the convex hull
of a finite set of points obtained from the given point by means of suitable
rotations. The dilatation invariant set of the possible values of b0 cannot
be reduced to 0, because T + generates T and cannot be the whole real line
because T + is a cone. It follows that it is the half line b0 ≤ 0 or the half line
b0 ≥ 0. For physical reasons, we choose the second possibility. In order to
avoid that, after a Lorentz transformation, b0 becomes negative, we have to
assume that T + is contained in the wedge defined by eq. (3.5).

We consider an arbitrary element of the interior of T + and we simplify
its coordinates by means of a suitable Lorentz transformation. Since the
four-vector b is timelike, we can obtain b = 0. Then, by means of a rotation,
we can cancel the third components of b′ and b′′. In conclusion, we obtain

b0 > 0, b1 = b2 = b3 = b[21] = b[03] = 0. (3.8)

We indicate by bα(ζ) the coordinates obtained from bα by means of a
Lorentz boost with rapidity ζ along the third space axis and we define the
quantities

bα± = 2 lim
ζ→±∞

exp(−|ζ |)bα(ζ). (3.9)

Since T + is Lorentz and dilatation invariant and it is also closed, it contains
the points with co-ordinates bα±. One can easily see that the only nonvanishing
limits are

b0± = b0, b
[01]
± = b[01] ± b[31], b

[32]
± = b[32] ± b[02],

b3± = ±b0, b
[02]
± = b[02] ± b[32], b

[13]
± = b[13] ± b[10] (3.10)
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and it follows that
bα = 2−1(bα+ + bα−). (3.11)

We have shown that the element considered is the sum of two elements
of T + that satisfy the conditions

‖b‖ = b0 > 0, ‖b′‖ = ‖b′′‖ = ab0,

b′ · b′′ = 0, b′ × b′′ = a2b0b. (3.12)

These conditions are equivalent to the Lorentz invariant conditions

b0 > 0, bkbk = 0, b[ik]b[ik] = 0,

ǫikjlb
ikbjl = 0, bjibjk = a2bibk a ≥ 0 (3.13)

and, for any given a ≥ 0, define a set Ta ⊂ T invariant with respect to the
proper orthochronous Lorentz group L. It follows that the decomposition
found above in a special case is also possible for an arbitrary element of the
interior of T +.

One can easily see that L acts transitively on the sets Ta, which are
either contained in T + or do not intersect it. The first possibility is realized
if a belongs to a closed convex set containing the point a = 0 and bounded,
otherwise for fixed b0 arbitrarily large values of b′ and b′′ would be permitted
and T + would not be a cone. In other words, we must have 0 ≤ a ≤ ℓ−1,
where ℓ is a positive fundamental length. One can easily see that if this
inequality is satisfied, every element of Ta can be written as the sum of two
elements of T1/ℓ.

In conclusion, we have proven that all the elements of the interior of
T + can be written as the sum of two elements of Ta with a ≤ 1/ℓ or of four
elements of T1/ℓ. Since T + is the closure of its interior, it is easy to show that
all its elements have the same decomposition. Note that, if B ∈ T1/ℓ, (b0)−1b,
ℓ(b0)−1b′ and ℓ(b0)−1b′′ form a left-handed triad of normalized orthogonal
vectors.

From the decomposition of an element of T + into elements of T1/ℓ and
eq. (3.12), we obtain immediately the inequalities

‖b‖ ≤ b0, ‖b′‖ ≤ ℓ−1b0, ‖b′′‖ ≤ ℓ−1b0, (3.14)

which can be interpreted as limitations to the velocity, the angular velocity
and the acceleration of a moving frame. The relevance of these inequalities
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for the motion of a particle connected to the frame are discussed in Chapter 8.
It easily follows, using the properties of the norm, that an element B ∈ T1/ℓ

can be decomposed as the sum of elements of T + only if all of them are
proportional to B. This means that T1/ℓ is the set of all the extremal elements
of the cone T +.

3.3 The symmetry group GL(4,R)

We have seen in Section 3.2 that, under some conditions, the cone T + is
completely determined by the value of the fundamental length ℓ. Following
refs. [7, 11, 12, 14], we now describe the same cone in a different way, which
permits an easier discussion of its properties.

We use the Dirac matrices γi (see Section 0.3) in a Majorana representa-
tion. They are real and satisfy the conditions

γTi = −CγiC
−1, det γi = 1, (3.15)

where γTi is the transposed matrix and C is a real antisymmetric matrix,
determined by this equation up to a numeric factor. It is determined up to
the sign if we require that its Pfaffian is equal to −1, namely that

2−3ǫABCDCABCCD = −1, (3.16)

a choice that is useful for the following developments and implies some re-
striction to the representation adopted for the γ-matrices. This condition
can be rewritten in any of the following equivalent useful forms

2−3ǫABCD(C−1)AB(C−1)CD = −1, (3.17)

ǫABCD = −CABCCD − CACCDB − CADCBC ,

ǫABCD = −(C−1)AB(C−1)CD

−(C−1)AC(C−1)DB − (C−1)AD(C−1)BC (3.18)

and it implies that
detC = 1. (3.19)

In a suitable representation one can put C = γ0, but one has to remember
that these matrices have a different spinor nature as it is clear if we introduce
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the spinor covariant and contravariant indices and write γAi B, CAB, (C−1)AB.
In any case, we choose the sign of C in such a way that Cγ0 is a positive
definite matrix.

We define the real symmetric 4 × 4 matrices

Γi = ℓ−1γiC
−1, Γ[ik] = 2−1(γiγk − γkγi)C

−1. (3.20)

and we put
b = bαΓα. (3.21)

We also define the real symmetric matrices

Γ̆α = (Γα)
−1, Γ̆i = ℓCγi, Γ̆[ik] = −2−1C(γiγk − γkγi), (3.22)

and from the property
2−2Tr (Γ̆αΓβ) = δαβ , (3.23)

we obtain the inverse formula

bα = 2−2Tr (Γ̆αb). (3.24)

We define T + by requiring that the real symmetric matrix b is positive
semidefinite, namely that

ψT bψ ≥ 0 (3.25)

for any choice of the real spinor ψ. It is clear that T + is symmetric under
the transformations

b→ abaT , a ∈ GL(4,R). (3.26)

Note that a and −a give rise to the same transformation of T . This transfor-
mation property means that the matrix bAB represents a contravariant sym-
metric GL(4,R) spinor. The possible physical relevance of many-dimensional
spaces with a local symmetry group different from a many-dimensional Lorentz
group has been examined, in a different context, in ref. [85]

Since a complex 2×2 matrix can be considered as a real 4×4 matrix, the
16-dimensional symmetry group GL(4,R) contains a subgroup isomorphic
to SL(2,C), namely to the universal covering of the proper orthochronous
Lorentz group. The infinitesimal Lorentz transformations are given by

a ∼ 1 + 2−1ζ [ik]Σ[ik], (3.27)
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where the matrices Σ[ik] are given by eq. (1.17). From this formula we obtain,
as it was expected,

δbi = ζ ijb
j , δb[ik] = ζ ijb

[jk] + ζkjb
[ij]. (3.28)

Since T + is a Lorentz invariant closed cone with nonempty interior, it
coincides with the cone defined in Section 3.2 and we have only to show that
the the parameter ℓ is the same. It is sufficient to remark that the extremal
elements defined by eq. (3.12) with a = ℓ−1 belong to the boundary of T +

and on this boundary the determinant det b vanishes.
By means of a direct calculation, using an explicit representation of the

gamma matrices, we obtain

det b = (ℓ−2(b0)2 − ℓ−2‖b‖2 − ‖b′‖2 − ‖b′′‖2)2 − 4ℓ−2‖b× b′‖2

−4‖b′ × b′′‖2 − 4ℓ−2‖b′′ × b‖2 + 8ℓ−2b0 b · b′ × b′′. (3.29)

A simple substitution shows that the required condition is satisfied, if the
parameter ℓ is the same as the one defined in Section 3.2.

It may be stimulating to propose a physical interpretation of det b [22].
We consider a moving frame τ → s(τ) with the property

ds(τ)

dτ
= bαAα ∈ T + (3.30)

and we consider the integral

ℓ
∫ τ

τ0
(det b)1/4 dτ. (3.31)

For ℓ→ 0 this integral takes the form

∫ τ

τ0
((b0)2 − ‖b‖2)1/2 dτ, (3.32)

which gives the relativistic formula for the time measured by an ideal clock
moving with the frame s(τ) and takes into account the influence of the ve-
locity on the clock rate. It is natural to assume that eq. (3.31) also takes
into account the influence of the acceleration and the angular velocity of the
frame and describes an ideal accelerated clock.

It is clear that all the real clocks are influenced by the inertial forces due
to acceleration and by the centrifugal forces due to rotation. These forces can
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even destroy the clock mechanism. Eq. (3.31) could describe a dependence
that cannot be made arbitrarily small by building more and more robust
mechanisms and cannot be explained in terms of the normal theory.

The function d(B) = (det b)1/4 is homogeneous of degree one and can be
considered as a pseudo-norm defined on the cone T+. We choose a represen-
tation of the γ matrices in which Cγ0 = 1 and we indicate by β1, . . . , β4 the
positive eigenvalues of b. Then we have

d(B) = (β1β2β3β4)
1/4 ≤ 2−2(β1 + β2 + β3 + β4) = 2−2Tr (b) = ℓb0. (3.33)

We can also deduce the interestig equation

d(B +B′) ≥ d(B) + d(B′). (3.34)

Note the different inequality sign with respect to the familiar ”triangular”
property of a norm. Since the determinants are invariant under SL(4,R),
we can apply a transformation of this group in such a way that b + b′ is a
multiple of the unit matrix. It follws that

d(B +B′) = 2−2Tr (b+ b′) = 2−2(Tr b+ Tr b′) ≥ d(B) + d(B′). (3.35)

There is an analogy with the pseudo-norm of a relativistic 4-vector, de-
fined on the future cone by the formula

d(v) = (−vivi)
1/2. (3.36)

It satisfies an inequality similar to eq. (3.34). In the tangent spaces of the
spacetime manifold, it is given by the square root of a quadratic form defined
by the metric tensor. If the quadratic form were definite positive, d(v) would
be a norm and M would be a Riemannian space, otherwise it is a pseudo-
Riemannian space. In the space S the pseudo-norm is not the square root
of a quadratic form, but the fourth root of a form of degree 4. If d(B) were
a norm, positive and defined for every vector B, S would be a Finslerian
space [86]. Since this is not the case, it is a pseudo-Finslerian space.

It is interesting to remark the double interplay between symmetry groups
and cones [21]. The rotational symmetry together with a choice of a maximal
valocity determines the future cone in a tangent space of M. The symmetry
group of this cone is the product of the Lorentz group and the dilatation
group. The Lorentz symmetry together with a choice of a maximal acceler-
ation (or of a fundamental length) determines the cone T +. The symmetry
group of this cone is GL(4,R).
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3.4 Orbits in T and causal influence

The action of GL(4,R) on the linear space T splits it into orbits, that,
according to Sylvester’s law of inertia, are characterized by the numbers p
and q of the positive and negative eigenvalues of the matrix b. We indicate
these orbits by Tpq with p+ q ≤ 4. We have

Tmn = −Tnm (3.37)

and the closure of one of these orbits is given by the formula

T pq =
⋃

m≤p
n≤q

Tmn. (3.38)

If p + q = 4, the orbit Tpq is open and the other orbits are contained in the
surface defined by

det b = 0. (3.39)

If we fix the quantities b,b′,b′′, the fourth degree equation (3.39) deter-
mines four real values of b0, that divide the real axis into five open (possibly
empty) intervals, corresponding to the five open orbits. When ℓ → 0, two
roots tend to ‖b‖ and the other two roots tend to −‖b‖. As a consequence,
the open orbits (or their closures) tend to the following limits

T 40 → {b0 ≥ ‖b‖}, T 31 → {b0 = ‖b‖}, T22 → {|b0| < ‖b‖},

T 13 → {b0 = −‖b‖}, T 04 → {b0 ≤ −‖b‖}. (3.40)

In this limit, the open orbits T31 and T13 and their closures tend to 9-
dimensional surfaces on which the four-vector b is lightlike, while the limit
of the other open orbits is determined by the requirement that b is spacelike
or timelike (with different signs of b0). The physical interpretation of these
limits is the same as in normal relativistic theories.

For ℓ > 0, the causal structure of T is more complicated and its physical
interpretation is not evident. A discussion of this problem is given in refs.
[12, 14]. The interpretation of

T 40 = T +, T 04 = −T + (3.41)

has already been given in Section 3.1 in terms of feasibility.
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The cone T + defines a partial ordering in S. If S is flat, namely it
is an affine space and all the vector fields Aα commute, we can define the
“difference” operation s′ − s ∈ T . Then the order relation s ≤ s′ is defined
by

s′ − s ∈ T +. (3.42)

The convexity of T + assures the validity of the transitive property of this
relation. In a nonflat space, we say that s ≤ s′ if there is a curve τ →
s(τ) with s(0) = s, s(1) = s′ and all its tangent vectors belonging to T +.
The relation defined in this way is reflexive and transitive and it is also
antisymmetric if there are no closed curves with all the tangent vectors in
T +.

We try an interpretation of the other orbits only when S is flat. This
is a good approximation if we consider a sufficiently small region of S. In
Chapter 11 (see also [12]) we show that the free quantum field operators Φ(s)
and Φ(s′) defined in the flat space S commute if s′−s ∈ T22. In analogy with
the quantum field theories in Minkowski spacetime, we say that in this case
the points s and s′ are causally disjoint, namely there is no causal influence
between them.

Of course, we have to clarify the concept of causal influence and this re-
quires the discussion of a kind of procedures that generalize the measurement
and the transformation procedures discussed in Section 2.2. We call them
restricted measurement procedures and they have the aim, starting from a lo-
cal frame s, of measuring some observables and to build a new local frame s′.
A class of equivalent restricted measurement procedure is called a restricted
measurement. Of course, we must have s ≤ s′.

The result of the restricted measurement is available at the frame s′,
in the sense that it can be used to specify some detail of a new procedure
performed starting from s′. We say that the restricted measurement starts
at s and ends at s′. We have already observed in Section 2.6 that it is not
reasonable to assume that the result of a measurement performed in a local
frame is available immediately to be used in procedures starting from the
same frame. The result of an unrestricted measurement is available only
after a macroscopic time, to be registered by some macroscopic instrument.

We say that a local frame s′ is causally influenced by a local frame s if a
procedure starting at s can influence the result of a restricted measurement
ending at s′. One cannot justify the assumption that this relation is transi-
tive, because the information transmitted from s to s′ is not necessarily of
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the kind that can be transmitted from s′ to s′′.
We assume that s′ is causally influenced by s if

s′ − s ∈ T C = T + ∪ T 31 =
⋃

q=0,1

Tpq. (3.43)

This assumption is consistent with the interpretation of T22, because this
orbit is just the complement of T C ∪ −T C . It is also consistent with the
limit (3.40) and the normal relativity theory. The set T C is not convex and
the relation of causal influence is not transitive. However, we have

T C + T + = T C . (3.44)

If
s′ − s ∈ T C ∩ −T C = T 11 (3.45)

s and s′ can influence one another in both directions. We call this relation
reciprocal influence. In a normal theory this can happen only if the two local
frames belong to the same fiber and, in fact, for ℓ→ 0 we have

T 11 → {b = 0} = TV . (3.46)

The reciprocal influence replaces the spacetime coincidence of the normal
relativistic theories in the same way as the spacelike separation of two events
replaces in a relativistic theory the time coincidence (simultaneity) of the
Newtonian theory. In a situation in which the light velocity can be considered
as infinite, there is no observable difference between spacelike separation and
simultaneity. In a similar way, in a situation in which one can disregard
the fundamental length, there is no observable difference between reciprocal
influence and spacetime coincidence.

Note that the relation of reciprocal influence (as well as the relation of
spacelike separation) is not transitive and cannot be used to build equivalence
classes, to be interpreted as points of spacetime (events).

From the property (3.37) we see that only the orbits T11 and T22 contain
straight lines. The orbit T22 also contains 3-dimensional vector subspaces, for
instance the subspace generated by A1, A2 and A3. Though we have no proof,
we conjecture that T22 does not contain 4-dimensional vector subspaces.

We say that a submanifold of S is spacelike if all its tangent vectors
belong to T22. We shall see in Section 4.1 that important physical quanti-
ties (conserved or not) are given by integrals of 3-forms on a 3-dimensional
submanifold. It is natural to choose spacelike submanifolds, but a more
restrictive choice may be necessary.
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3.5 SL(4,R) spinors and SO(3, 3) tensors

The symmetry group FG introduced in Section 2.5 leaves the geometry of T
and in particular the cone T + invariant and therefore it must be a subgroup
of the 16-dimensional group GL(4,R). In the present Section we study some
tensor representations of this group and of its subgroup SL(4,R). In order
to avoid confusion with the tensors of the Lorentz group and of other pseudo-
orthogonal groups, we use the word spinors.

We have already met the symmetric contravariant spinor bAB, which de-
termines an element of the vector space T . In a similar way one can de-
scribe the 10-momentum introduced in Section 1.9 by means of a symmetric
covariant spinor pAB that transforms according to a different inequivalent
representation of SL(4,R). It is given by

p = pαΓ̆
α, pα = 2−2Tr (Γαp) (3.47)

and we have
bαpα = bipi + 2−2b[ik]p[ik] = 2−2Tr (bp). (3.48)

The determinant of the matrix p which is invariant under SL(4,R), can
be written in the form

det p = (ℓ2(p0)
2 − ℓ2‖p‖2 − ‖p′‖2 − ‖p′′‖2)

2
− 4ℓ2‖p × p′‖2

−4‖p′ × p′′‖2 − 4ℓ2‖p′′ × p‖2 − 8ℓ2p0 p · p′ × p′′ (3.49)

where we have introduced the 3-dimensional vector notation (1.74)
In the following, we shall also meet antisymmetric spinors. A covariant

antisymmetric spinor fAB can always be written in the form

f = fuΘ̆
u, fu = −2−2Tr (Θuf), (3.50)

where u = 0, . . . , 5. We have introduced the antisymmetric matrices

Θi = γiγ5C
−1, Θ4 = −C−1, Θ5 = −γ5C

−1 = −G−1. (3.51)

Θ̆u = −(Θu)
−1, Θ̆i = Cγiγ5, Θ̆4 = C, Θ̆5 = Cγ5 = G. (3.52)

The matrix γ5 is defined in Section 0.3. In the Majorana representation it is
real and has the property

γT5 = Cγ5C
−1. (3.53)
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We have
−2−2Tr (Θ̆uΘv) = δuv . (3.54)

In a similar way, a contravariant antisymmetric spinor hAB can always be
written in the form

h = huΘu, hu = −2−2Tr (Θ̆uh). (3.55)

The group GL(4,R) has two connected components with different signs
of det a. In the following we treat with some detail only the connected com-
ponent of the identity GL(4,R)0. The 15-dimensional subgroup SL(4,R) ⊂
GL(4,R)0 is defined by the condition det a = 1 and is connected. The totally
antisymmetric spinors ǫABCD and ǫABCD are invariant under this subgroup.
They define an invariant (not positive) quadratic form (namely the Pfaffian)
in the spaces of the covariant and contravariant antisymmetric spinors and
SL(4,R) acts on these spaces by means of pseudo-orthogonal transforma-
tions.

By means of eq. (3.18), we obtain

2−3ǫABCDΘ̆u
ABΘ̆v

CD = guv, 2−3ǫABCDΘAB
u ΘCD

v = guv, (3.56)

2−3ǫABCDfABfCD = guvfufv, 2−3ǫABCDh
ABhCD = guvh

uhv, (3.57)

where guv = guv is the diagonal 6-dimensional metric tensor with g11 = g22 =
g33 = 1, g00 = g44 = g55 = −1. The representation of SL(4,R) in the
space of the antisymmetric spinors defines a homomorphism SL(4,R) →
O(3, 3). Since both these Lie groups have dimension 15, this is a local iso-
morphism and the Lie algebras sl(4,R) and o(3, 3) are isomorphic. The
group SL(4,R) is mapped onto the connected component of the identity
SO(3, 3)0 ⊂ SO(3, 3) and the kernel of the homomorphism is composed of
the two matrices ±1.

We can write the infinitesimal transformations of SL(4,R) in the form

a ∼ 1 + 2−1ζ [uv]Σ[uv], u, v = 0, . . . , 5, (3.58)

where the 4 × 4 real matrices Σ[ik] are given by eq. (1.17) and

Σ[i4] = −Σ[4i] = 2−1γiγ5, Σ[i5] = −Σ[5i] = 2−1γi,

Σ[45] = −Σ[54] = 2−1γ5. (3.59)
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They provide a basis for the Lie algebra sl(4,R) = so(3, 3) and satisfy the
commutation relations

[Σ[uv],Σ[xy]] = gvxΣ[uy] − guxΣ[vy] − gvyΣ[ux] + guyΣ[vx]. (3.60)

Note that the elements of the Lie algebra, on which the adjoint representation
of the group operates, can be represented by traceless mixed rank two spinors
or by antisymmetric rank two tensors.

The infinitesimal transformations of Dirac spinors and of covariant and
contravariant antisymmetric spinors are given by

δΨ = 2−1ζ [uv]Σ[uv]Ψ, (3.61)

δf = −2−1ζ [uv](ΣT
[uv]f + fΣ[uv]), δh = 2−1ζ [uv](Σ[uv]h + hΣT

[uv]). (3.62)

One can easily check the formulas

Σ[uv]Θw + ΘwΣT
[uv] = gvwΘu − guwΘv,

ΣT
[uv]Θ̆

w + Θ̆wΣ[uv] = δwu Θ̆v − δwv Θ̆u (3.63)

and from eqs. (3.50) and (3.55) one obtains the expected 6-vector infinitesimal
transformations

δfu = ζu
vfv, δhu = ζuvh

v. (3.64)

The infinitesimal transformations of covariant and contravariant symmet-
ric spinors are

δp = −2−1ζ [uv](ΣT
[uv]p+ pΣ[uv]), δb = 2−1ζ [uv](Σ[uv]b+ bΣT

[uv]). (3.65)

In order to introduce the corresponding SO(3, 3) tensors, we define the quan-
tities

p[uvw] = 2−2Tr (Θu Θ̆vΘwp), b[uvw] = 2−2Tr (Θ̆u ΘvΘ̆wb). (3.66)

It is easy to show that they transform as tensors of rank 3, namely

δp[uvw] = ζu
xf[xvw] + ζv

xf[uxw] + ζw
xf[uvx],

δb[uvw] = ζuxb
[xvw] + ζvxb

[uxw] + ζwxb
[uvx]. (3.67)

By computing the traces, we find that, as it is suggested by the notation,
these quantities are antisymmetric with respect to their three indices and are
given by

p[i45] = −ℓpi p[ijk] = −ℓǫijk
lpl,

p[ik4] = p[ik], p[ik5] = 2−1ǫik
jlp[jl], (3.68)

58



b[i45] = −ℓ−1bi b[ijk] = ℓ−1ǫijklb
l,

b[ik4] = b[ik], b[ik5] = −2−1ǫikjlb
[jl]. (3.69)

We enclose an antisymmetric set of three indices into square brackets to
indicate that they replace a greek index that labels a basis in the space T ∗ or
T . In a similar way we define the vector fields A[uvw] and the 1-forms ω[uvw].

The general 6-dimensional antisymmetric tensors of rank 3 have 20 inde-
pendent components and, in order to describe the vectors of a 10-dimensional
space, they must satisfy some constraint. In fact, from the formulas given
above, we have

6−1ǫuvw
xyzp[xyz] = p[uvw], 6−1ǫuvwxyzb

[xyz] = −b[uvw]. (3.70)

This means that these tensors are respectively self-dual and anti-self-dual.
In terms of the usual Lorentz components, the transformation formulas

(3.67) take the form

δpi = ζi
jpj + ℓ−1ζ [k5]p[ik] − 2−1ℓ−1ζ [j4]ǫij

klp[kl],

δp[ik] = ζi
jp[jk] + ζk

jp[ij] + ℓ(ζ[i5]pk − ζ[k5]pi)

−ℓζ [j4]ǫikj
lpl − 2−1ζ [45]ǫik

jlp[jl] (3.71)

δbi = ζ ijb
j + ℓζ[k5]b

[ik] − 2−1ℓζ [j4]ǫijklb
[kl],

δb[ik] = ζ ijb
[jk] + ζkjb

[ij] + ℓ−1(ζ [i5]bk − ζ [k5]bi)

−ℓ−1ζ [j4]ǫikjlb
l + 2−1ζ [45]ǫikjlb

[jl]. (3.72)

These formulas can be interpreted as the transformations of the components
corresponding to the infinitesimal transformations of the basis vectors Aα
and ωα in the vector spaces T and T ∗. It follows that Aα and ωα transform,
respectively, in the same way as the components pα and bα.

3.6 Subgroups of SL(4,R)

A subgroup of GL(4,R) that leaves a nondegenerate antisymmetric covariant
spinor f invariant, namely

aTfa = f, det f 6= 0, (3.73)
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is contained in SL(4,R). It is isomorphic to the symplectic group Sp(4,R)
and locally isomorphic to the anti-de Sitter group SO(2, 3), namely to the
subgroup of SO(3, 3) that leaves the 6-vector fu invariant.

All these symplectic subgroups are reciprocally conjugate and we shall
use only the ones that contain the subgroup SL(2,C) defined by eq. (3.27).
They are defined by the condition (3.73) with

f = cosαC + sinαG, −π/2 < α ≤ π/2 (3.74)

and we indicate them by Sp(4,R)α. In particular, we call Sp(4,R)0 =
Sp(4,R)V the vector symplectic subgroup, because its Lie algebra contains,
besides the six independent generators Σ[ik] of SL(2,C), the four elements
Σ[i5] that transform as the components of a 4-vector. In a similar way we call
Sp(4,R)π/2 = Sp(4,R)A the axial symplectic subgroup, because its Lie alge-
bra contains, besides the generators of SL(2,C), the four elements Σ[i4] that
transform as the components of an axial vector. We indicate by SO(2, 3)V
and SO(2, 3)A the corresponding anti-de Sitter groups or, more exactly, their
identity connected components. They leave invariant, respectively, the com-
ponents f4 and f5 of a 6-dimensional vector fu.

We indicate by F0 the subgroup of GL(4,R) containing the transforma-
tions that do not mix the vertical and the horizontal subspaces and do not
involve the parameter ℓ. It is defined by the condition

aγ5 = ±γ5a (3.75)

and it contains the subgroup SL(2,C), the space reflection represented by
a = ±γ0, the dilatations of T and the one-parameter subgroup U(1)5 gener-
ated by Σ[45] and described by the formulas

a = exp(2−1αγ5), (3.76)

bi → bi, b[ik] → cos(α)b[ik] + 2−1 sin(α)ǫikjlb
[jl]. (3.77)

In particular, for α = ±π we obtain the vertical reflection, represented by
a = ±γ5, which changes the sign of the vertical vectors leaving the horizontal
vectors unchanged. Note that

γT0 Cγ0 = C, γT0 Gγ0 = −G,

γT5 Cγ5 = −C, γT5 Gγ5 = −G, (3.78)
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and therefore
γ0 ∈ Sp(4,R)V , γ0γ5 ∈ Sp(4,R)A. (3.79)

Since these groups are connected, a symmetry with respect to γ0 or γ0γ5

follows from the symmetry with respect to infinitesimal transformations of
the corresponding group. Since space inversion is not a symmetry of nature,
this remark gives an argument in favour of of the choice of Sp(4,R)A as a
high symmetry group, as it was observed in refs. [6] and [12].

If, after the rescaling

ℓ−1ζ [i4] = ζ iA, ℓ−1ζ [i5] = ζ iV (3.80)

of the parameters, we perform the limit ℓ → 0, we obtain a contraction
[87, 88] of the group GL(4,R). The subgroup F0, that does not involve ℓ is
not affected by the the contraction. The contracted group is a semi-direct
product of F0 and a 8-dimensional commutative group parametrized by ζ iA
and ζ iV .

By taking the limit of eqs. (3.71) and (3.72), we find the transformation
laws with respect to the commutative subgroup of the contracted group

pi → pi + ζkV p[ik] − 2−1ζjAǫij
klp[kl], p[ik] → p[ik], (3.81)

bi = bi, b[ik] → b[ik] + ζ iV b
k − ζkV b

i − ζjAǫ
ik
jlb

l, (3.82)

that also describe finite transformations. Note that the contracted group is
a symmetry group of the normal wedge defined by eq. (3.5). The complete
symmetry group of this wedge, however, is much larger.

In order to introduce the fundamental length ℓ by means of a symmetry
group, in the same way as one introduces the fundamental velocity assuming
the Lorentz symmetry, one has to use at least one of the symplectic groups
Sp(4,R)α. We shall see in Chapter 7 that Sp(4,R)A is the best choice. This
group is locally isomorphic to the anti-de Sitter group SO(2, 3)A, and it is
possible to develop a 5-dimensional tensor formalism based on this group,
which was introduced in ref. [6].

We have already seen in Section 3.5 that an antisymmetric covariant
spinor f[AB] is equivalent to a 6-dimensional SO(3, 3) vector fu. If we con-
sider only the subgroup SO(2, 3)A, the quantities fu, u = 0, . . . , 4 are the
components of a 5-dimensional vector and f5 is a scalar. We have also seen
that a contravariant symmetric spinor b(AB) is equivalent to a 6-dimensional
self-dual antisymmetric tensor b[uvw], that is completely determined by its
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components of the form b[uv5], with u, v = 0, . . . , 4. These components trans-
form as a 5-dimensional antisymmetric tensor of rank 2 under SO(2, 3)A,
since the last index is not affected by this group. In a similar way, a con-
travariant spinor h[AB] is equivalent to a 5-dimensional antisymmetric tensor
of rank 2 h[uv5].

In the transition from the 6-dimensional to the 5-dimensional tensor for-
malism, the following consequences of eq. (3.70) are useful:

p[uvw] = 2−1ǫuvw
xyp[xy5], b[uvw] = 2−1ǫuvwxyb

[xy5],

u, v, w, x, y = 0, . . . , 4. (3.83)

3.7 The spinor representation of the struc-

ture coefficients

All the geometric quantities introduced in Section 1.7 can be written in spinor
form by means of a change of basis in the spaces T and T ∗. For instance we
put

A(AB) = Γ̆α(AB)Aα, ω(AB) = Γ(AB)
α ωα, (3.84)

F
(EF )
(AB)(CD) = Γ̆α(AB)Γ

(EF )
γ Γ̆β(CD)F

γ
αβ. (3.85)

We enclose a symmetric pair of indices into round brackets to indicate that
they replace a greek index.

The structure coefficients for a spacetime with constant curvature, given
by eqs. (1.12), (1.36) and (1.78) take the form

F̂
(EF )
(AB)(CD) = 4(3 − ℓ2ρ) δ

(E
(A CB)(C δ

F )
D)

−4(1 + ℓ2ρ) (γ5)
(E

(AGB)(C δ
F )
D)

−4(1 + ℓ2ρ) δ
(E
(A GB)(C (γ5)

F )
D)

+4(1 + ℓ2ρ) (γ5)
(E

(A CB)(C (γ5)
F )
D). (3.86)

where the round brackets indicate the symmetrization of the enclosed indices.
This expression contains the spinors C and γ5 and it is not invariant

with respect to the whole group GL(4,R) and not even with respect to its
symplectic subgroups. It is invariant with respect to a subgroup isomorphic
to SL(2,C), namely it is Lorentz invariant, as it is evident from the original
definition given by eqs. (1.12), (1.36) and (1.78). Actually, γ5 appears an
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even number of times and the structure constants are also invariant under
space reflection. Their sign changes under vertical reflection.

For ρ = −ℓ−2, γ5 disappears from the expression (3.86) and the struc-
ture constants are invariant with respect to the vector symplectic subgroup
Sp(4, R)V locally isomorphic to an anti-de Sitter subgroup. These structure
constants describe a space-time with a very large constant negative curva-
ture. It has no physical relevance, not even as a highly unstable inflationary
vacuum, due to the wrong sign of the curvature R = 12ρ.

The contractions of the expressions (3.86) with respect to one or two pairs
of indices are given by the useful formulas

F̂
(EF )
(AB)(CF ) = 6(3 − ℓ2ρ) δE(ACB)C − 6(1 + ℓ2ρ) (γ5)

E
(AGB)C , (3.87)

F̂
(EF )
(AE)(FC) = 12(4 − ℓ2ρ)CAC . (3.88)

An interestig linear function of the structure coefficients is the antisym-
metric spinor

48tAB = F
(CD)
(AC)(DB), (3.89)

which can be written in matrix form as

48t = ℓCγiγmγ
jFm

ij + 2−1ℓ2Cγiγmγnγ
jF

[mn]
ij

−2−1C(γiγkγmγ
j − γjγmγ

iγk)Fm
[ik]j

−2−2ℓC(γiγkγmγnγ
j − γjγmγnγ

iγk)F
[mn]
[ik]j

+2−2ℓ−1Cγiγkγmγ
jγlFm

[ik][jl] + 2−3Cγiγkγmγnγ
jγlF

[mn]
[ik][jl]. (3.90)

From eq. (3.50), by computing the traces, we can obtain the components of
the corresponding 6-dimensional vector tu, which are rather long expressions.
In the case of a spacetime with constant curvature we have

ti = 0, t4 = 1 − (48)−1ℓ2R, t5 = 0. (3.91)

In the general case, we prefer to use a different method based on the
6 and 5-dimensional tensor calculus. The component t5 is invariant under
SO(2, 3)A. The structure coefficients are the components of a 5-dimensional

tensor of the kind F
[yz5]
[uv5][wx5] and, by contraction of the indices, one can obtain

only one linear SO(2, 3)A invariant, namely we have

48t5 = gvwF
[xy5]
[xv5][wy5]. (3.92)
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The choice of the numerical coefficient will soon be justified.
In a similar way, one can define the following 5-dimensional vectors de-

pending linearly on the structure coefficients:

48fu = −ǫyz
vwxF

[yz5]
[uv5][wx5],

48f ′
u = ǫuy

vwxF
[yz5]
[vw5][xz5],

48f ′′
u = ǫuxy

vwgzz
′

F
[xy5]
[vz5][z′w5], (3.93)

where ǫuvwxy is the 5-dimensional completely antisymmetric tensor. We have

ǫyzvwxF
[yz5]
[uv′5][w′x′5]g

vv′gww
′

gxx
′

− 2ǫyuvwxF
[yz5]
[zv′5][w′x′5]g

vv′gww
′

gxx
′

−2ǫyzvwuF
[yz5]
[xv′5][w′x′5]g

vv′gww
′

gxx
′

= 0, (3.94)

because this expression has been antisymmetrized with respect to the 6 in-
dices u, y, z, v, w, x, which can take only 5 values. In this way we obtain

−fu + 2f ′
u − 2f ′′

u = 0 (3.95)

and we see that there are only two independent 5-dimensional vectors that
are linear functions of the structure coefficients.

The other components tu with u = 0, . . . , 4 can be determined starting
from t5 by means of the transformation property

48ζ5
utu = 48δt5 = gvwζ5

uF
[xy5]
[xvu][wy5]

+gvwζ5
uF

[xy5]
[xv5][wyu] + gvwζ5

uF
[xyu]
[xv5][wy5]. (3.96)

Since the infinitesimal parameters ζ5
u are arbitrary, we obtain, also using eq.

(3.83),
tu = f ′

u − 2−1f ′′
u = 2−2fu + 2−1f ′

u. (3.97)

The quantities defined above can be expressed as 4-dimensional tensors
by means of eqs. (3.68) and (3.69) and we obtain

48ti = ℓǫil
jkF l

jk + 2ℓǫim
jlF

[km]
[kj]l + 2−1ℓǫkmjlF

[jl]
[ik]m − 2−2ℓǫjklmF

[lm]
[jk]i

−2−1ℓǫim
jlF

[km]
[jl]k − 2−1ℓ−1ǫkjlmF

m
[ik][jl] + 2−1ℓ−1ǫi

jlmF k
[jl][km],

48t4 = ℓ2F
[ik]
ik + 2gkjF i

[ik]j + gkjF
[il]
[ik][jl],

48t5 = −2−1ℓ2ǫikjlF
[jl]
ik − ǫikj lF

l
[ik]j

−2−1ǫmn
ilgkjF

[mn]
[ik][jl] − ǫn

kjlF
[in]
[ik][jl]. (3.98)
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48fi = −ℓǫjklmF
[lm]
[jk]i − 2ℓǫim

jlF
[km]
[jl]k + 2ℓ−1ǫi

jlmF k
[jl][km],

48f4 = 4ℓ2F
[ik]
ik + 4gkjF i

[ik]j, (3.99)

In particular, if we consider a bundle of frames, for instance a solution of
the Einstein-Cartan equations, we have

ti = (48)−1ℓǫil
jkF l

jk, t4 = 1 − (48)−1ℓ2R, t5 = 0, (3.100)

fi = 0, f4 = 1 − (12)−1ℓ2R. (3.101)

In conclusion, the 5-vectors obtained linearly from the structure coefficients
are linear cobinations of tu and fu. The first 5-vector, together with t5 forms a
6-vector and the second one, which was introduced in ref. [6], is characterized
by the property that it does not depend on the torsion.

We have seen that, if the geometric symmetry group FG of the field equa-
tions is larger than the orthochronous Lorentz group, the vacuum solution
has a lower symmetry, namely we have a spontaneous symmetry breaking.
In Chapter 7 we shall consider field equations symmetric with respect to
the axial symplectic group Sp(4,R)A and the symmetry breaking can be at-
tributed to a nonvanishing asymptotic value of the 5-vector fu, which plays
a role similar to the role played by the Higgs field in the Standard Model of
elementary particles [41].

3.8 Subgroups of GL(4,R) as gauge groups?

In the present notes we always consider the symmetry group FG acting on the
tangent spaces of S as a global symmetry, namely the transformation acting
on TsS does not depend on s and can be considered as a transformation
of the linear space T . Of course, it must preserve the cone T +, namely it
must be a subgroup of SL(4,R). Note that, while SL(2,C) is considered as
a gauge group on the spacetime M it represents a global symmetry when
considered as a subgroup of FG.

One may ask if FG can be considered as a gauge group, namely if a
different group element can act on different tangent spaces. Of course one
has to give up the absolute parallelism of S and therefore the operational
interpretation of the vector fields described in Section 2.2. This interpetation
can be criticized as a realistic description of the physical operations, but it

65



provides a very useful guide for the theoretical intuition. We think that we
cannot renounce to this guide in the present stage of the theoretical research.

We note that S is a generalization of a principal bundle, namely of the
mathematical structure that describes a gauge theory defined on the space-
time manifold M. A gauge theory defined on S would deserve the name of
“second gauge theory” in analogy with the denomination “second quantiza-
tion” used in the old times to indicate the construction of a quantum field
theory. Then, why not to introduce a “third gauge theory” and so on?
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Chapter 4

Lagrangian dynamics of
classical fields

4.1 Conserved forms

A scalar conserved quantity, for instance the electric charge, is described in
the spacetime formalism by a four-vector field Jµ(x), called a current. The
charge contained in a space region Σ belonging to a spacelike surface x0 = t
is given by

q =
∫

Σ
J0(t,x)(− det g)1/2 d3x =

∫

Σ
τ̂ , (4.1)

where we have introduced the differential 3-form

τ̂ = 6−1Jλ(x)(− det g)1/2ǫλµνσ dx
µ ∧ dxν ∧ dxσ. (4.2)

The conservation law

∂

∂xλ

(

(− det g)1/2Jλ
)

= 0 (4.3)

can be written in the simple form dτ̂ = 0.
We consider the pull-back of τ̂ on S, given by

τ• = π∗τ̂ = J i(s) ηi = T i• ηi, (4.4)

where the forms ηi are defined in Section 0.3. The quantities J i, that we
also indicate by T i•, are the anholonomic components of the current and we
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assume that the determinant of the matrix eiλ is positive. We have used the
formula

π∗dx
µ = eµkω

k. (4.5)

The conservation law takes the form

dτ• = 0 (4.6)

and the charge is given by an expression of the kind

q =
∫

Σ
τ•, (4.7)

where Σ is a three-dimensional submanifold of S which has a spacelike pro-
jection on M. Note that, in order to obtain the correct sign, one has to
choose the orientation of the submanifold Σ in such a way that the 3-form
ω1 ∧ ω2 ∧ ω3 defines a positive density.

If τ• has the form (4.4), we say that it describes a spatially localized
quantity, but τ• may have a more general form, depending on all the one-
forms ωα. In this way, as we shall see in Section 5.1, one can describe the
energy-momentum the gravitational field, that is known to be “nonlocalized”
in the sense that its spatial density depends on the choice of the coordinates
or of a tetrad field [28, 31, 32]. The description of conserved quantities by
means of 3-forms is valid also when S is not a fibre bundle and a spacetime
manifold cannot be defined. In this case, the choice of the submanifold Σ
and of its orientation becomes a delicate problem that we discuss in Capter
7.

In Maxwell’s theory the current is given by the formula

(− det g)1/2Jµ =
∂

∂xν

(

(− det g)1/2F νµ
)

. (4.8)

There is no agreement between various textbooks on the sign in this formula,
namely on the definition of the electromagnetic field tensor Fµν . We indi-
cate by Fik the anholonomic components of the electromagnetic field and we
identify them with the structure coefficients F •

ik. With our conventions, the
connection with the electric and magnetic 3-dimensional vectors is

E = (F01, F02, F03), B = (F32, F13, F21). (4.9)

It follows that

τ̂ = 6−1 ∂

∂xτ

(

(− det g)1/2F τλ
)

ǫλµνσ dx
µ ∧ dxν ∧ dxσ = −dσ̂, (4.10)
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where
σ̂ = 2−2(− det g)1/2F λτǫλτµνdx

µ ∧ dxν . (4.11)

The 2-form −σ̂ is called sometimes the Maxwell 2-form [28] and it is related
to the dual electromagnetic tensor.

In this case too, we consider the pull-back of σ̂ on S, given by

σ• = π∗σ̂ = 2−2F •
ik(s)ǫ

ik
jl ω

j ∧ ωl (4.12)

and we have
τ• = −dσ•, q =

∫

Σ
τ• = −

∫

∂Σ
σ•. (4.13)

This is a generalized form of the Gauss law, that gives the charge as a surface
integral of the electric field. We shall see in the following that a similar
generalized Gauss law holds for other conserved quantities, related to gauge
symmetry properties.

4.2 The action principle and the field equa-

tions

Now we want to derive the field equations and the conservation laws of a
classical field theory from an action principle. It will be clear in the treatment
of the Noether theorem given in Section 4.3 that, if the conserved quantities
are given by integrals of differential 3-forms on 3-dimensional surfaces, the
action must be given by an integral of a differential 4-form on a 4-dimensional
surface. This important idea has been proposed independently in refs. [3, 4]
and [51, 52].

Note the difference with respect to the Kaluza-Klein theory [47, 48] and
its generalizations in a d-dimensional space, in which the action is given
by a d-dimensional integral. We shall follow, with some simplifications, the
treastment of refs. [3, 5].

It is convenient to use as dynamical variables the 1-forms ωα and the
scalar fields ΨU , where A is not necessarily a spinor index. Some of the
fields ΨU may be anticommuting quantities, that, after quantization, become
Fermionic fields. Then, the order of some factors is relevant and we define
the derivative of a function λ with respect to the quantity Ψ in such a way
that

δλ = δΨ
∂λ

∂Ψ
. (4.14)
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In other words, the derivative with respect to an anticommuting variable is
an antiderivation of the graded algebra of functions (see Chapter 10).

If we exclude the presence of higher derivatives, the action principle takes
the general form

δ
∫

S
λ = 0, (4.15)

where the Lagrangian form λ (sometimes simply called Lagrangian) is given
by

λ = (24)−1λαβγδ(F
η
ǫζ , AǫΨ

U ,ΨU)ωα ∧ ωβ ∧ ωγ ∧ ωδ. (4.16)

The relativity principle, in the form discussed in Section 2.2, requires that λ
has no explicit dependence on s and we shall exploit this property in Section
4.3. The condition (4.15) must hold for an arbitrary choice of the compact
4-dimensional integration surface S, provided that the variations δωη and
δΨU vanish on the boundary ∂S of S.

We assume first that the variations δΨU and δωη vanish on the surface
S, namely we put

δΨU = ζU(s)f(s), δωη = ζηǫ (s)f(s)ωǫ, (4.17)

where ζU(s) and ζηζ (s) are arbitrary infinitesimal function and the commut-
ing function f(s) vanishes on the surface S. The quantities ζU have the
same commutation properties as the fields ΨU . On the surface S we have,
disregarding higher order infinitesimals,

δΨU = 0, δAǫΨ
U = ζUAǫf, (4.18)

δωη = 0, δdωη = ζηǫ df ∧ ωǫ. (4.19)

The last equality can also be written in the form

−2−1δF η
ζǫ ω

ζ ∧ ωǫ = ζηǫAζfω
ζ ∧ ωǫ (4.20)

namely
δF η

ǫζ = ζηǫAζf − ζηζAǫf. (4.21)

The action principle takes the form

∫

S

(

ζUAǫf
∂λ

∂AǫΨU
− 2ζηζAǫf

∂λ

∂F η
ǫζ

)

= 0, (4.22)
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and, since ζU(s) and ζηζ (s) are arbitrary, we get

∂λ

∂AǫΨU

∣

∣

∣

∣

∣

S

Aǫf = 0,
∂λ

∂F η
ǫζ

∣

∣

∣

∣

∣

S

Aǫf = 0, (4.23)

where |S means the restriction of the differential form to the surface S and
f must vanish on S.

Given five different indices α, β, γ, δ, ǫ, we can choose S and f in such a
way that, at a given point of S, only the restrictions of ωα, ωβ, ωγ, ωδ do not
vanish and only Aǫf is not zero. In this way we obtain the conditions

∂λαβγδ
∂AǫΨU

= 0,
∂λαβγδ
∂F η

ǫζ

= 0. (4.24)

This means that these expression vanish if all the indices α, β, γ, δ are differ-
ent from ǫ. Therefore we can write, for any value of the indices,

ωǫ ∧
∂λ

∂AǫΨU
= 0, ωǫ ∧

∂λ

∂F η
ǫζ

= 0, (4.25)

with no sum over the index ǫ.
Since these condition hold for any choice of the basis in the space T , for

any choice of the coefficients ξǫ we have

ξθξǫω
θ ∧

∂λ

∂AǫΨU
= 0, ξθξǫω

θ ∧
∂λ

∂F η
ǫζ

= 0 (4.26)

and we obtain the following equations

ωθ ∧
∂λ

∂AǫΨU
+ ωǫ ∧

∂λ

∂AθΨU
= 0, (4.27)

ωθ ∧
∂λ

∂F η
ǫζ

+ ωǫ ∧
∂λ

∂F η
θζ

= 0. (4.28)

We call them the normal field equations because they are obtained by con-
sidering the derivatives of the fields normal to the integration surface. They
have no analog in field theries based on spacetime.

If we apply the interior product operator iǫ = i(Aǫ) to these equations,
we obtain

∂λ

∂AǫΨU
= ωǫ ∧ πU , πU = (n− 3)−1iǫ

∂λ

∂AǫΨU
, (4.29)
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∂λ

∂F η
ǫζ

= (n− 3)−1ωǫ ∧ iθ
∂λ

∂F η
θζ

. (4.30)

By using the last equation twice, after some calculations, we obtain

∂λ

∂F η
ǫζ

= −2−1ωǫ ∧ ωζ ∧ ση, ση = 2(n− 3)−1(n− 2)−1iǫiζ
∂λ

F η
ǫζ

. (4.31)

Now we simplify the action principle by means of the equations (4.29),
(4.31) and we derive another set of field equations called the tangential field
equations. We consider a general choice of δΨU and δωη and we have

δλ = δΨU ∂λ
∂ΨU + δ(AαΨ

U)ωα ∧ πU + δωα ∧ iαλ− 2−1δF η
αβ ω

α ∧ ωβ ∧ ση

= δΨU ∂λ
∂ΨU + dδΨU ∧ πU − AαΨ

Uδωα ∧ πU

+δωα ∧ iαλ+ dδωη ∧ ση + F η
αβ δω

α ∧ ωβ ∧ ση. (4.32)

By means of the generalized Stokes theorem, we obtain

δ
∫

S λ =
∫

∂S(δΨ
UπU + δωα ∧ σα) +

∫

S δΨ
U
(

−dπU + ∂λ
∂ΨU

)

+
∫

S δω
α ∧

(

dσα + iαλ− AαΨ
UπU + F η

αβ ω
β ∧ ση

)

. (4.33)

If δΨU and δωα vanish on ∂S, the first integral vanishes and, since these
quantities are arbitrary at the internal points of S, from the action principle
we obtain the following tangential field equations

dπU =
∂λ

∂ΨU
, (4.34)

dσα = −τα, (4.35)

where
τα = −AαΨ

UπU − L(Aα)ω
η ∧ ση + iαλ. (4.36)

We have introduced the Lie derivative

L(Aα)ω
η = −F η

αβ ω
β. (4.37)

It follows that
dτα = 0, (4.38)

namely the forms τα describe quantities that are conserved as a consequance
of a Gauss law.

72



4.3 Noether’s theorem

In order to discuss the relation between symmetry and conservation laws,
we start from eq. (4.33). We do not assume that the variations of the fields
vanish on ∂S, but we take into account the field equations, so that the last
two integrals vanish. We obtain

∫

∂S
θ =

∫

S
δλ, θ = δΨUπU + δωα ∧ σα. (4.39)

Since S is arbitrary, we have
dθ = δλ (4.40)

and if λ is invariant, namely δλ = 0, the 3-form θ is conserved, namely
dθ = 0. This equation can be considered as a formulation of the Noether
theorem.

We consider two different kinds of infinitesimal symmetry transforma-
tions. If we use eq. (2.11), that describes a symmetry property of the La-
grangian, for any element κ of the Lie algebra of the symmetry group F , we
obtain the conserved quantity

θ(κ) = θG(κ) + θM(κ),

θG(κ) = Cα
β(κ)ω

β ∧ σα, θM(κ) = SUV (κ)ΨV πU . (4.41)

If we consider an infinitesimal diffeomorphism generated by the infinites-
imal vector field B, we have, since λ, does not depend on s explicitly,

δΨU = BΨU , δωα = L(B)ωα,

δλ = L(B)λ = i(B)dλ + di(B)λ. (4.42)

If we put

τ(B) = θ − i(B)λ = BΨUπU + L(B)ωα ∧ σα − i(B)λ, (4.43)

from eq. (4.40) we obtain

dτ(B) = i(B)dλ. (4.44)

For B = −Aα, we have τ(−Aα) = τα and these quantities are interpreted
as the density and the current density of (10+n)-momentum with respect
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to the moving frame s. We have introduced a minus sign because we are
considering active transformations of the fields, defined, for scalar fields, by

s→ s′, Ψ(s) → Ψ′(s), Ψ′(s′) = Ψ(s). (4.45)

One has to remember that the energy density is described by τ 0 = −τ0. In
fact, even in elementary mechanics, the Hamiltonian is the generator of the
passive time translations.

From eq. (4.38) we obtain

iαdλ = −dτα = 0 (4.46)

and therefore
dλ = 0. (4.47)

This formula, that follows from the field equations and the invariance of the
Lagrangian under diffeomorphisms, implies that the action integral depends
only on ∂S and not on the details of S. It is trivially satisfied in a theory
based on the 4-dimensional spacetime.

In conclusion, for any choice of the vector field B, as a consequence of
the invariance under diffeomorphisms, we have the conservation law

dτ(B) = 0. (4.48)

Note that the conservation laws can be easily derived from the field equations.
We have derived them from the action integral for pedagogical reasons and
to make more clear their connection with the symmetry properties.

In order to show that eq. (4.48) follows from a generalized Gauss law, we
introduce the 2-form

σ(B) = −bασα, B = bαAα (4.49)

and, by means of the formula

L(B)ωα = i(B)dωα + di(B)ωα = bβL(Aβ)ω
α + dbα, (4.50)

we see that
dσ(B) = −dbα ∧ σα + bατα = −τ(B). (4.51)

In the following Sections, we consider Lagrangian forms invariant with
respect to the infinitesimal Lorentz transformations (2.13) and from eq. (4.41)
we obtain the conserved quantities

θ[ik] = F̂ α
[ik]βω

β ∧ σα + Σ[ik]
U
V ΨV πU . (4.52)
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Their conservation does not depend on the geometry of S. If S is a bundle
of frames, as in Chapter 1, we have

τ[ik] = θ[ik] + i[ik]λ. (4.53)

Note that
di[ik]λ = L(A[ik])λ− i[ik]dλ = 0 (4.54)

and the three forms that appear in eq. (4.53) are all conserved.

4.4 Minimal coupling and the balance equa-

tions

In many interesting cases, there is a minimal coupling between geometry and
matter, namely a decomposition of the kind

λ = λG + λM , (4.55)

where λG describes the geometry, namely the gravitation and other gauge
fields and does not contain Ψ and its derivatives, while λM describes the
matter and does not contain the structure coefficients or the two-forms dωα.
We shall see in Section 5.1 that there are terms that depend only on ωα and
can be attributed arbitrarily to λG or to λM .

The conserved quantities can be decomposed in a similar way:

τ(B) = τG(B) + τM (B), (4.56)

τG(B) = L(B)ωα ∧ σα − i(B)λG, (4.57)

τM (B) = BΨUπU − i(B)λM (4.58)

and the tangential field equation (4.35) can be written in the form

dσα + F η
αβ ω

β ∧ ση + iαλ
G = −τMα , (4.59)

τMα = τM (−Aα) = −AαΨ
UπU + iαλ

M . (4.60)

In general τM(B) is not conserved separately and its conservation law
has to be replaced by a balance equation that takes into account the forces
exerted by the geometric fields. By means of the same procedure used to
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derive eq. (4.32) and by taking the tangential field equations into account,
we obtain

δλM = d(δΨUπU ) + δωα ∧ τMα . (4.61)

By introducing the variations (4.42), we have

i(B)dλM + di(B)λM = L(B)λM = d(BΨUπU) + L(B)ωα ∧ τMα (4.62)

and finally the balance equation

dτM(B) = −L(B)ωα ∧ τMα + i(B)dλM . (4.63)

In many cases the last term vanishes. In particular, if λM is a homoge-
neous function of degree m 6= 0 of Ψ and its derivatives, we can put

δωα = 0, δΨU = ζΨU , δAαΨ
U = ζAαΨ

U , δλM = mζλM (4.64)

and from eq. (4.61) we obtain

mλM = d(ΨUπU ), dλM = 0. (4.65)

If S is the bundle of frames of the Minkowski spacetime, and we consider
the isomorphism g → ŝg between S and the Poincaré group, the vector fields
ALα, defined by eq. (1.66), commute with all the fundamental vector fields Aα
and we have L(Aα)ω

β = 0. It follows that the quantities

τM(−ALα) = Dβ
α(g

−1)τMβ (4.66)

are conserved. They describe the energy-momentum and the relativistic total
angular momentum of matter with respect to the fixed frame ŝ. No symmetry
property of the Lagrangian form is required for these conservation laws.

For B = −Aα we have

dτMα = −F γ
αβω

β ∧ τMγ . (4.67)

We shall use this formula in Chapter 8 in order to describe the motion of a
test particle in external geometric fields. The differential 3-forms τMα describe
the density and the flow of the (10+n)-momentum of matter (see Section 1.9).
The balance equations show that the change of a component of the (10+n)-
momentum is given by the product of some other components of (10+n)-
momentum and some geometric fields. For instance, a change of momentum
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is given by the product of the electric charge and the electric field. All the
relations of this kind are contained in a compact way in eq. (4.67).

We see that the structure constants of the Poincaré group play a role
similar to the role played by the electromagnetic field. This remark gives
another support to the idea that all the structure coefficient should have a
dynamical nature.

If we consider spatially localized quantities of the kind (4.4), or, more in
general

τMα = T kαηk, (4.68)

we assume that S has the structure of principal bundle as in Chapter 1, and
we use the formula

dηi = −F k
ikη + 2−1F j

[kl]iω
[kl] ∧ ηj , (4.69)

from eq. (4.67) we obtain the Lorentz and gauge transformation properties

A[ik]T
j
α = F β

[ik]αT
j
β − F j

[ik]lT
l
α, AaT

j
α = F β

aαT
j
β (4.70)

and the balance equations

AiT
i
α − F k

ikT
i
α = F β

iαT
i
β. (4.71)

In particular we have the equation

AjT
j
[ik] − F k

jkT
j
[ik] = gijT

j
k − gkjT

j
i , (4.72)

showing that, even in the absence of external fields, the spin density is not
conserved, unless the energy momentum tensor Tik is symmetric.

4.5 Pre-symplectic formalism and double dif-

ferential forms

Many quantization procedures start from some kind of canonical formalism.
A covariant canonical formalism on a group manifold has been developed
in refs. [89, 90]. A covariant symplectic approach to geometric field theories
proposed in ref. [91] can be adapted very naturally to the theories described
in the present notes and we shall follow many of its ideas, that will play an
important role in the following. The symplectic structure of the phase space

77



is the starting point of geometric quantization [67, 68]. Though we have no
reasonable hope to carry out the whole quantization of the classical theories
we are considering, the general concepts given in the present Section may
suggest some useful ideas.

It is useful to start from the analogy with a mechanical system with d
degrees of freedom [92–94]. The phase space Γ can be interpeted as the space
of motions, namely the space of the solutions of the equations of motion
or of the corresponding initial conditions at a given time t. We indicate
by qχ, χ = 1, . . . , d a local system of Lagrangian coordinates, by q̇χ the
corresponding velocities and we define, as usual, the canonical momenta

pχ(t) =
∂L

∂q̇χ
, (4.73)

where L(qχ, q̇χ) is the Lagrange function. The (closed, nondegenerate) sym-
plectic form is given by

Ω(t) = d̂qχ(t) ∧ d̂pχ(t), d̂Ω(t) = 0. (4.74)

We use the symbol d̂ to denote the exterior derivative of differential forms
defined on Γ, in order to avoid confusion with the exterior derivative of
differential forms defined on Sn, that we continue to indicate by d. We also
introduce the notation î(X) and L̂(X) for the inner product and the Lie
derivative acting on the differential forms in Γ. For the exterior product, we
use in both cases the symbol ∧.

In the following it is useful to consider double differential forms, a con-
cept treated with some detail in ref. [95]. A (u, v)-double form defined, for
instance, on Γ×Sn is given, at a given point of this manifold, by a multilinear
form depending (antisymmetrically) on u vectors of the tangent space of Γ
and v vectors of the tangent space of Sn. The manifold Sn can be replaced by
the manifold that describes the geometry in other theories, for instance the
spacetime M or, in the simple mechanical system we are now considering,
the time axis R.

The time evolution of the system is described by a one-parameter group of
diffeomorphisms of Γ generated by a vector field X. The dynamical variables
are functions defined on Γ × R, that we can also consider as (0, 0)-double
differential forms. Their time derivative is given by

d

dt
f = ḟ = Xf = î(X)d̂f (4.75)
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and the canonical equations of motion can be written in the form

î(X)Ω = d̂H, (4.76)

where H(qχ, pχ) is the Hamiltonian function. It follows that

d

dt
Ω = L̂(X)Ω = d̂̂i(X)Ω = d̂d̂H = 0, (4.77)

namely the symplectic form Ω does not depend on time. This is the property
that justifies its definition.

We can consider Ω as a double (2, 0)-form on the manifold Γ × R. More
explicitly, it is at the same time a 2-form on Γ and a 0-form (namely a
function) on R. The fact that it does not depend on t can be written as
dΩ = 0, while d̂Ω = 0 means that, for any value of t, it is a closed form on Γ.

If we consider a field theory, the space Γ is infinite-dimensional and the
mathematics of differential forms [27] becomes rather delicate and also am-
biguous, because one has to choose a norm, or at least a topology, in the
tangent spaces. We shall not enter into these details and our proposal is ad-
mittedly deprived of any mathematical rigour. We hope that, if necessary, it
will be possible to transform it into a mathematically acceptable treatment.

Following the analogy with a mechanical system we treat the quantities
ωα and ΨU as “Lagrangian coordinates” and the quantities F γ

αβ and AαΨ
U as

the “velocities”. A comparison between the normal field equations written
in the form (4.29), (4.31) and eq. (4.73) suggests that the forms σα and πa
should be considers as the “canonical momenta” of the theory.

A natural generalization of eq. (4.74) is

Ω(Σ) =
∫

Σ
Ω, Ω = d̂ωα ∧ d̂σα + d̂ΨU ∧ d̂πU . (4.78)

Under the integral sign, we have the (2, 3)-double form Ω, that we call the
symplectic double form and represents, in some sense, a “density” of symplec-
tic form. The 3-dimensional submanifold Σ of Sn should be chosen with the
same criteria used in Section 4.1 to define the global conserved quantities, for
instance the electric charge, starting from the corresponding closed 3-forms
that describe their “densities”.

The choice of Σ is a difficult problem, but fortunately we can prove that,
as a consequence of the field equations, we have dΩ = 0. As in the mechanical
case, this is the crucial property of Ω. It follows that Ω(Σ) is not affected by
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deformations of Σ that modify only a compact subset and not its boundary
∂Σ. However, Σ should extend to infinity and problems of convergence may
arise. Moreover, Ω(Σ) could depend on the asymptotic behavior of Σ.

It has been remarked, in the framework of quantum field theory [96, 97],
that globally defined quantities are not really observable and that a field the-
ory should be described in terms of local algebras of observables concerning
compact regions of spacetime. Perhaps the form Ω(Σ) with sufficiently large
but compact Σ could be sufficient for the construction, by means of some
quantization procedure, a local algebra of observables. A further develop-
ment of this idea is completely outside the purposes of the present notes.
In the following we do not specify the choice of Σ, since many local results
can be obtained by considering the symplectic double form Ω, without any
reference to the symplectic form Ω(Σ).

The infinitesimal variations indicated by δ in the preceding Sections can
be described by an infinitesimal vector field X defined on Γ. If f is a dynam-
ical variable, described as a (0, v)-double form, its infinitesiamal variation
previously indicated by δf , in the present Section should be indicated by
Xf = î(X)d̂f .

The 3-form θ defined by eq. (4.39) depends on a vector field X that
describes the variations indicated by the symbol δ and it is more correctly
interpreted as a (1, 3)double form defined by

θ = d̂ΨU ∧ πU + d̂ωα ∧ σα (4.79)

and eq. (4.40) gives
î(X)dθ = î(X)d̂λ. (4.80)

Since X is arbitrary, we obtain the important relation between (1, 4)-double
forms

dθ = d̂λ, (4.81)

that can be considered asd a formulation of Noether’s theorem in terms of
double forms. In conclusion, we have

Ω = −d̂θ, dΩ = −dd̂θ = −d̂d̂λ = 0, (4.82)

as it was announced above. We also have

Ω(Σ) = −d̂θ(Σ), θ(Σ) =
∫

Σ
θ (4.83)
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and we see that, in the circumstances we are considering, the symplectic form
Ω(Σ), besides being a closed form, is also exact.

Many interesting theories are described by a degenerate Lagrangian and
one can eliminate (locally) the “velocities” F γ

αβ , AαΨ
U from the the normal

equations (4.29) and (4.31), obtaining primary Lagrangian constraints that
involve only the “Lagrangian coordinates” ωα, ΨU and the “canonical mo-
menta” σα and πU . In some cases, from the other field equations one also
obtains secondary constraints. As a consequence, the states of the system
are described by the points of the submanifold Γ′ ⊂ Γ defined by all the
constraint equations. A more detailed dicussion of primary and secondary
constraints can be found, for instance, in ref. [98]. It may be useful to re-
mark that the submanifold Γ′ is not necessarily defined by a set of global
constraint equations. It may be necessary to use different constraint equa-
tions in a neighborhoods of differnt points of Γ′.

The symplectic formalism allows a treatment of the constraints consider-
ably simpler than the better known approach based on the Poisson and Dirac
brackets [98]. If the restriction Ω′(Σ) of the form Ω(Σ) to the submanifold Γ′

is nondegenerate, Γ′ is a symplectic manifold to be identified with the phase
space of the system. The corresponding Poisson brackets (different from the
Poisson brackets of Γ) are called the Dirac brackets.

However, in the most interesting cases the 2-form Ω′(Σ) is degenerate. In
this case, the space Γ′ is not a symplectic space, but a pre-symplectic space
and there are vector fields X on Γ′ that satisfy the condition

î(X)Ω′(Σ) = 0. (4.84)

These vector fields are interpreted as the generators of gauge transformations.
As a consequence of the property

d̂Ω′(Σ) = 0, (4.85)

they define an integrable distribution of subspaces in the tangent spaces of
Γ′ and one can apply Frobenius’ theorem, as we have done in Section 2.3 (if
there is a version of this theorem valid in the infinite-dimensional manifolds
we are considering!). If the set Γ′′ of the leaves has a manifold structure, one
can define on it a symplectic (nondegenerate) form Ω′′(Σ) and one obtains
in this way the true phase space of the theory.

Alternatively (under suitable conditions), one can introduce, besides the
Lagrangian constraints, other gauge fixing constraints that define a subman-
ifold Γ′′ ⊂ Γ′ ⊂ Γ that itersects all the leaves of Γ′ at only one point and is
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clearly equivalent to the set of the leaves introduced above. In this case, one
can identify Ω′′(Σ) with the restriction of Ω(Σ) to Γ′′. We can also consider
the restriction θ′′(Σ) of the 1-form θ(Σ) to Γ′′ and we have

Ω′′(Σ) = −d̂θ′′(Σ), (4.86)

namely Ω′′(Σ) is exact. It is not necessary to assume that Γ′′ is defined
globally by a set of constraint equations.

However, it is not always possible to find a submanifold Γ′′ with the
required properties, as one can see from simple finite-dimensional examples.
Then the closed form Ω′′(Σ) does not need to be exact and may have nontriv-
ial topological (cohomological) properties that can give rise to obstructions
to the quantization procedure [67, 68] unless the Planck constant h̄ takes
some special values, as we have shortly discussed in Section 2.4. It is for this
reason that we try to give some attention to the topological properties of the
phase space.

We have already remarked in Section 2.5 that the theories we are consid-
ering have gauge transformations corresponding to the diffeomorphisms of
Sn. If the vector field B in Sn generates infinitesimal diffeomorphisms of this
manifold, the vector field X on Γ that generates the corresponding gauge
transformations is defined by

Xf = î(X)d̂f = L̂(X)f = L(B)f, (4.87)

where f is an arbitrary dynamical variable, namely a (0, v)-double form.
Since the Lie derivatives are derivations of the algebra of the differential
forms, this formula can be extended to an arbitrary (u, v)-double form f ,
namely we have in general

L̂(X)f = L(B)f. (4.88)

If there are Lagrangian constraints, the vector field X is tangent to Γ′ and it
can be considered as a vector field on this submanifold.

By means of the formulas given above and eq. (4.43) and (4.51), we can
write

î(X)Ω = −î(X)d̂θ = −L̂(X)θ + d̂̂i(X)θ

= −L(B)θ + d̂(L̂(X)ΨUπU + L̂(X)ωα ∧ σα)

= −i(B)dθ − di(B)θ + d̂(L(B)ΨUπU + L(B)ωα ∧ σα)

= d̂τ(B) − di(B)θ = −d(d̂σ(B) + i(B)θ). (4.89)
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It follows that
î(X)Ω(Σ) = −

∫

∂Σ
(d̂σ(B) + i(B)θ̂) (4.90)

and, ifB has a compact support that does not intersect the boundary ∂Σ, this
expression vanishes as it is expected if X generates a gauge transformation.

If X generates a symmetry transformation of the kind (2.11), all the
quantities that have only contracted indices are invariant and in particular
we have

L̂(X)λ = 0, L̂(X)θ = 0, L̂(X)Ω = 0. (4.91)

It follows that
î(X)Ω = −î(X)d̂θ = d̂̂i(X)θ, (4.92)

î(X)Ω(Σ) = d̂̂i(X)θ(Σ). (4.93)

We see that î(X)θ(Σ) is the generator of the infinitesimal symmetry trans-
formation in the same sense as the Hamiltonian is the generator of the time
evolution in eq. (4.76). Note that this quantity is just the one that is con-
served according to the Noether theorem of Section 4.3.

As a further application of the double forms, we consider the addition to
the Lagrangian form of an exact term of the kind dµ , where the 3-form µ
depends only on ωα and ΨU , namely on the “Lagrangian coordinates”, but
not on the “velocities”. We know that the field equations remain unchanged.
We have

λ→ λ+ dµ = λ+ dωα ∧ i(Aα)µ+ dΨU ∧
∂µ

∂ΨU
. (4.94)

It follows that

σα → σα + i(Aα)µ, πU → πU +
∂µ

∂ΨU
(4.95)

and

θ → θ + d̂ωα ∧ i(Aα)µ+ d̂ΨU ∧
∂µ

∂ΨU
= θ + d̂µ, Ω → Ω. (4.96)

The symplectic double form Ω is not affected by the new term.
If the vector field X defined on Γ generated a symmetry transformation

leaving the Lagrangian invariant, for the corresponding conserved quantity
θ we have

θ = î(X)θ → θ + î(X)d̂µ = θ +Xµ. (4.97)

We see that θ remains unchanged if µ is symmetric.
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Chapter 5

Reformulation of some classical
field theories

5.1 The Einstein-Cartan theory of gravita-

tion

In the present Chapter we treat some classical field theories in the space S,
which are symmetric with respect to the Lorentz group, do not satisfy the
equity principle and do not contain a fundamental length ℓ (see Section 2.4).
They allow an alternative formulation based on the spacetime M, but some
fields may acquire a geometric meaning that is not present in the spacetime
formulation. A careful study of these theories is necessary for the search of
new theories with a higher symmetry group, that is the object of Chapter 7.

We start with the Einstein-Cartan theory of gravitation [37,38], that gen-
eralizes Einstein’s theory by allowing nonvanishing values of the torsion and
an influence of the spin density on the geometry. It may be considered as a
step towards a theory in which all the structure coefficients have a physical
relevance. However, in this theory the torsion is not a really new dynamical
variable, since it is given as an algebraic function of the spin density. The
physical consequences of the Einstein-Cartan theory and of General Relativ-
ity cannot be distinguished by means of the presently available experimental
techniques. In a first approach, we disregard the presence of electromagnetic
fields and of other internal gauge fields, namely we consider a 10-dimensional
space S.

A Lagrangian form that describes the Einstein-Cartan theory in the space
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S has been proposed in ref. [3]. A simpler and more elegant Lagrangian
has been proposed independently by Ne’eman and Regge in refs. [51, 52].
In the following we consider a slight generalization of the Ne’eman-Regge
Lagrangian form and we decompose it into a hard part λH , that depends
linearly on the structure coefficients through the exterior derivatives dωα,
and an additional part λA, which does not contain them and could equally
well be considered as a part of the matter Lagrangian λM . For instance, one
can include a cosmological constant k4 in the potential (5.61) of the Higgs
scalar field.

We put λG = λH + λA with

λH = (k − k1)ǫikjl dω
[ik] ∧ ωj ∧ ωl

+2k1ǫikjl dω
i ∧ ω[kj] ∧ ωl − k2ǫikjnglmdω

[ik] ∧ ω[jl] ∧ ω[mn], (5.1)

λA = k3ǫikjl gmn ω
[im] ∧ ω[nk] ∧ ωj ∧ ωl − k4η, (5.2)

where η is defined in Section 0.3, k = k3 = (32πG)−1 and G is Newton’s
gravitational constant. In Section 6.1 we need this formula with k3 6= k.

One can show that these equations give the most general Lorentz invariant
4-form depending on the 1-forms ωα and at most linearly on the 2-forms dωα,
with the property that it is odd under space reflection, namely it contains
the antisymmetric quantity ǫikjl. One can easily see that a 4-form with these
properties depending only on the 1-forms ω[ik] necessarily vanishes.

In refs. [51, 52] the special case with k1 = k2 = k4 = 0 was considered.
The two terms proportional to k1 and k2 are exact forms, since they can be
written as

−d
(

k1ǫikjl ω
[ik] ∧ ωj ∧ ωl + 3−1k2ǫikjnglmω

[ik] ∧ ω[jl] ∧ ω[mn]
)

. (5.3)

They do not affect the field equations and the action integral, if δωα = 0
on the boundary ∂S. However, they influence the definition of the four-
momentum and angular momentum of the geometric fields, which are known
to be ambiguous in General Relativity [28, 99]. They also play a role in the
construction of the theories treated in Section 6.1 and in the Chapter 7. The
term proportional to k4 takes into account a cosmological constant, that has
raised a considerable interest in the recent years [100, 101].

The normal field equations are automatically satisfied and we have

σ[ik] = 2(k − k1)ǫikjl ω
j ∧ ωl − 2k2ǫikjnglmω

[jl] ∧ ω[mn],

σi = 2k1ǫikjl ω
[kj] ∧ ωl. (5.4)
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These quantities do not depend on the structure coefficients and we can write

λH = dωα ∧ σα. (5.5)

As a consequence, we obtain the following simplified formulas for the grav-
itational 10-momentum (4.57) and for the geometric tangential field equa-
tions (4.59):

τGα = dωβ ∧ iασβ + iαλ
A, (5.6)

dσα + dωβ ∧ iασβ + iαλ
A = −τMα . (5.7)

Even in a flat spacetime, the forms τGα are not spatially localized, since
they contain the forms ω[ik]. In a theory in which all the structure coefficients
have a dynamical role, this flow of 10-momentum can be considered as the
source of the structure constants of the Poincaré group. This is a relevant
change of perspective, which can influence the construction of new modified
classical theories of gravitation.

The tangential field equations have the explicit form

2kǫikjlF
j
αβω

α ∧ ωβ ∧ ωl

−2k3(ǫinjlgkm − ǫknjlgim)ω[mn] ∧ ωj ∧ ωl = τM[ik], (5.8)

kǫikjlF
[kj]
αβ ω

α ∧ ωβ ∧ ωl

−2k3ǫijklgmnω
[jm] ∧ ω[nk] ∧ ωl + k4ηi = τMi . (5.9)

We call them the vertical and the horizontal tangential equations. As it was
expected, the coefficients k1 and k2 have disappeared.

If the 10-momentum of matter has the spatially localized form (4.68), we
obtain

F i
jk + δijF

l
kl − δikF

l
jl = 8πGT i[jk], F i

[jk]l = F̂ i
[jk]l, F i

[jk][mn] = 0, (5.10)

−F
[ik]
jk + 2−1δijF

[lk]
lk = 8πG(T ij − k4δ

i
j),

F
[ik]
[jl]m = 0, F

[ik]
[jl][mn] = F̂

[ik]
[jl][mn], (5.11)

namely the field equations of the Einstein-Cartan theory, together with the
properties of the structure coefficients that are expected when S is the bundle
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of the Lorentz frames of a spacetime manifold. We stress that all these
properties are consequences of the action principle.

Besides these equations, we have to take into account two Bianchi iden-
tities, which are special cases of eq. (1.55). Also the tensor transformation
properties of curvature and torsion follow from eq. (1.55), as we have already
observed in Section 1.7.

5.2 Internal gauge theories

A Lagrangian form in an extended space S describing Maxwell’s electromag-
netism has been proposed in ref. [3] and it has been generalized to noncom-
mutative gauge theories in ref. [54]. In order to give a motivation, in the
electromagnetic case one can start from the Maxwell form σ• defined in eq.
(4.12), which appears in the Gauss law (4.13). The generalization to an
arbitrary internal gauge theory is

σa = 2−2GabF
b
ikǫ

ik
jl ω

j ∧ ωl, dσa = −τa, (5.12)

where the nondegenerate real symmetric matrix Gab is invariant under the
internal gauge group G, namely it has the property

F̂ d
abGdc + F̂ d

acGbd = 0. (5.13)

Eq. (5.12) can be obtained from the extended geometric Lagrangian form
λG = λH + λA + λI where the new term is given by

λI = dωa ∧ σa + 2−3GabF̂
a
cdF

b
ikǫ

ik
jl ω

c ∧ ωd ∧ ωj ∧ ωl

+2−2GabF
a
ikF

b
jlg

ijgklη. (5.14)

In the usual formulation of the Standard Model of the elementary particles,
the matrix Gab contains the coupling constants of the theory. Alternatively,
one can rescale the vector fields Aa the forms ωa, the structure constants
F̂ a
bc and the matrices Σa in such a way that Gab = δab. Then, the coupling

constants are contained in F̂ a
bc and in Σa. For the Maxwell theory we adopt

the standard convention with rationalized units, namely we put G•• = 1 and
the coupling constant, namely the elementary charge, appears in Σ•, namely
in the gauge transformation law of the charged fields given by eq. (1.28). If
one prefers nonrationalized units, one has to put G•• = (4π)−1.
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The Lagrangian form (5.14) depends only on the structure coefficients
F a
αβ with a ≥ 10, while these coefficients do not appear in the other parts

of the Lagrangian form λ. The partial derivatives of λ with respect to F a
αβ

have a contribution from the structure coefficients implicitly contained in
dωa and a contribution from the structure coefficients explicitly present in
the Lagrangian, namely we have

∂λ

∂F a
ǫζ

= −2−1ωǫ ∧ ωζ ∧ σa +

(

∂λI

∂F a
ǫζ

)

E

, (5.15)

where the subscript E indicates the second contribution, that, as we see
from eq. (5.14), vanishes if ǫ > 3 or ζ > 3. The first contribution disappears
from the normal field equation (4.28) and we easily see that, for η = a, this
equation is equivalent to the simpler condition

(

∂λI

∂F a
ik

)

E

= 0. (5.16)

More explicitly we have

−2−3F a
αβǫ

ik
jl ω

α ∧ ωβ ∧ ωj ∧ ωl

+2−3F̂ a
cdǫ

ik
jl ω

c ∧ ωd ∧ ωj ∧ ωl + 2−1gijgklF a
jlη = 0 (5.17)

and, considering various values of the indices α and β, we obtain the normal
field equations in the form

F a
bc = F̂ a

bc, F a
βγ = −F a

γβ = 0, β ≤ 9, α ≥ 4. (5.18)

If these equations are satisfied, the quantity (5.12) is the same that appears
in eq. (4.31) and we have

λI = −2−2GabF
a
ikF

b
jlg

ijgklη. (5.19)

We describe gravitation as in Section 5.1, but in the extended space S.
The presence of λI affects the tangential field equations (4.59) by adding to
the source term τMi the new term

τ Ii = F a
ik ω

k ∧ σa + iiλ
I = Iji ηj ,

Iji = Gab(F
a
imF

b
lng

mnglj − 2−2F a
pmF

b
qng

mngpqδji ), (5.20)
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that represents the energy-momentum of the gauge field. There is no contri-
bution of the gauge field to the spin density, in agreement with the treatment
given in ref. [37]. The energy density cannot be negative, namely

I00 = −I0
0 = 2−1GabF

a
0rF

b
0sg

rs ≥ 0, (5.21)

if the matrix Gab is positive definite.
There also is the additional tangential field equation

dσa + F̂ c
ab ω

b ∧ σc = −τMa , (5.22)

where the right hand side describes the charges of matter. The second term
in the left hand side, that describes the charges of the Yang-Mills field, is
absent in Maxwell’s theory. Note that it is not spatially localized, since it
contains ωb.

If τMa is spatially localized, eq. (5.22) can be written in the more explicit
form

Gab(g
ijgklAlF

b
ik − gijgklFm

lmF
b
ik − 2−1gimgknF j

mnF
b
ik) = −T ja , (5.23)

AaF
b
ik = −F̂ b

acF
c
ik, A[ik]F

a
jl = F̂m

[ik]jF
a
ml + F̂m

[ik]lF
a
jm. (5.24)

The first formula is the Yang-Mills field equation with torsion corrections. In
particular it gives the inhomogeneous Maxwell equations. The other formulas
give the transformation properties of the gauge field strength with respect
to gauge and Lorentz transformations. As we have observed in Section 1.7,
these properties also follow from eq. (1.55). From the same general formula
we also obtain the equation

AiF
a
jk + AjF

a
ki + AkF

a
ij − F l

ijF
a
lk − F l

jkF
a
li − F l

kiF
a
lj = 0, (5.25)

that in the electromagnetic theory is just the homogeneous Maxwell equation.
Note that, in this case too, the typical properties of the structure coeffi-

cients of a principal fibre bundle are consequences of the action principle.

5.3 Scalar fields

A treatment of matter fields is given in refs. [4, 5, 102], where fields with
arbitrary spin are considered. In the present notes we treat only scalar and
Dirac fields, which are needed in the Standard Model of elementary particles
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[41] to describe the Higgs field and Fermions, namely we put λM = λS + λD.
We try, as far as it is possible in a classical framework, to take into account
some special features of the Standard Model, in particular the chiral character
of the internal gauge transformation of Fermions and the mass generation
mechanism.

The word “scalar” has two different meanings. From a first point of view,
a scalar field is invariant under the Lorentz transformations considered as
elements of the structural group of a principal fibre bundle. This property
will appear as a consequence of the field equations. From another point of
view, it is invariant with respect to the Lorentz transformations considered
as elements of the symmetry group F of the Lagrangian and of the field
equations.

We describe the real scalar fields of the theory by the one-column matrix
Ξ, on which an orthogonal representation of the internal symmetry group
operates. A complex scalar field can be decomposed in its real and imaginary
parts, that appear as different elements of the one-column matrix Ξ. We
indicate by ΣS

a the real antisymmetric matrices that describe the infinitasimal
internal symmetry transformations of this group.

The field equations can be derived from the Lagrangian form [4, 5, 102]

λS = −gikdΞTAkΞ ∧ ηi + gikΞTΣS
aAkΞω

a ∧ ηi

+2−1gikAiΞ
TAkΞ η − V (Ξ)η, (5.26)

where V (Ξ) is a function of the scalar fields invariant under the internal
symmetry group.

The dericatives of Ξ appear only in λS and we have

∂λ

∂AαΞ
= ωα ∧ πS +

(

∂λS

∂AαΞ

)

E

, (5.27)

where
πS = −gikAkΞηi (5.28)

is a one-column matrix. The subscript E indicates a partial derivative that
does not take into account the dependence on the quantities AαΞ implicitly
contained in dΞ. It vanishes if α > 3. The term containing πS disappears
from the normal field equation (4.27) and one can easily see that this equation
is equivalent to the simpler equation

(

∂λS

∂AiΞ

)

E

= 0. (5.29)

90



After some calculations, we obtain the normal field equations in the more
explicit form

A[ik]Ξ = 0, AaΞ = −Σ′
aΞ. (5.30)

They describe the transformation properties of Ξ under the Lorentz and the
internal symmetry group. The quantity (5.28) is the same that appears in
eq. (4.29) and the tangential equation (4.34) takes the form

−gikAiAkΞ + gikF j
ijAkΞ +

∂V

∂Ξ
+ ΨTC

∂M

∂Ξ
Ψ = 0. (5.31)

Note that λ depends on Ξ through the function V , but also through the mass
generating term in the Fermion Lagrangian (5.36) introduced in the following
Section.

If we use the normal field equations, the Lagrangian (5.26) takes the form

λS = −(2−1gikAiΞ
TAkΞ + V (Ξ))η. (5.32)

From eq. (4.60), we see that the contribution of the scalar field to the spin
density vanishes and the contribution to the energy-momentum and to the
charges is given by

T ′i
j = gikAjΞ

TAkΞ − (2−1glkAlΞ
TAkΞ + V (Ξ))δji , (5.33)

T ′i
a = gikΞTΣ′

aAkΞ. (5.34)

Note that if V (Ξ) is positive, the contribution to the energy density T ′00 is
positive too.

5.4 Spinor fields

As in the case of scalar fields, the spinor character of a field may have two dif-
ferent meanings, namely a transformation property of the kind (1.6), (1.14)
with respect to the structural group of a fibre bundle or a transformation
property of the kind (2.10), (2.11) with respect to the symmetry group F of
the Lagrangian and of the field equations. In the present Chapter, disregard-
ing internal symmetries, both the groups are SL(2,C), but in the following
developments the distinction becomes more relevant. If S is not a fibre bun-
dle, a structural group may not exist. On the other hand, the geometric
symmetry group of the Lagrangian may be larger than SL(2,C).
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We use the Majorana representation in which the gamma matrices are
real (see Section 3.3) and we consider a set of Majorana fields Ψ (namely
real Dirac fields) with a spinor index and other indices describing other de-
grees of freedom, on which a real orthogonal representation S of the internal
symmetry group I operates. The group I contains the gauge group G, but
it may also contain other elements that represent global symmetries. It is
irrelevant to distinguish between upper and lower internal indices. All these
indices are understood and Ψ, as well as the 3-form πD are considered as
one-column matrices.

We assume that the components of Ψ anticommute, in order to obtain
Fermion fields after quantization. We remark that in a classical theory an-
ticommuting fields cannot be used for the construction of observables, since
an arbitrary product of these fields has a vanishing square and it cannot be
considered as a real or a complex number, even if it contains an even number
of Fermionic fields and commutes with all the other fields.

In other words, the classical fields take their values in a Grassmann al-
gebra, as it is discussed with more deatail in Chapter 10. The analogy with
quantum theory requires that it is a complex algebra with an involution
Ψ → Ψ∗ that we call “complex conjugation”. From the property

(Ψ1Ψ2)
∗ = Ψ∗

2Ψ
∗
1, (5.35)

we see that the product of two real anticommuting fields is imaginary. This
is the reason of the factors i that appear in many formulas in the following.

When expressions containing Fermionic fields appear as sources of clas-
sical geometric fields, one has to replace them by the averages of the cor-
responding quantum fields in a suitable state, a procedure that necessarily
requires drastic approximations. Note that an expression of the kind ΨTAΨ
vanishes if the numeric matrix A is symmetric. This is also true if Ψ is an
Hermitian Fermionic free quantum field and normal products are used.

A complex Dirac field ΨC can be decomposed into its real and imag-
inary parts, which are real fields and appear as different elements of the
one-column matrix Ψ. As we shall see in Section 5.5, specific theories of
elementary particles are more simply formulated in terms of complex Dirac
fields, but for our present purposes a formulation in terms of real fields is
more convenient, since it permits a more clear distinction between geometric
and internal symmetries.

In quantum theory, one has to be careful with the charge superselection
rule [59]: given a charged field, its real part when applied to the vacuum
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creates a superposition of states with different electric charges, that do not
exist in nature. A similar problem arises with quark and gluon fields.

In order to derive the field equations, we start from the following La-
grangian form, written in terms of real fields

λD = −idΨTCγiΨ ∧ ηi + 2−2iφΨTC(γiΣ[jk] + Σ[jk]γ
i)Ψω[jk] ∧ ηi

+iΨTCγiΣaΨω
a ∧ ηi + iΨTCMΨη, (5.36)

where the forms ηi and η are defined in Section 0.3 and the matrices Σ[jk] that
represent the Lorentz Lie algebra, are defined by eq. (1.17). The matrices
Σa describe the infinitesinal transformations of the internal gauge group as
in eq. (1.25). In the Einstein-Cartan geometry of Section 5.1 we have to put
φ = 1 and in the geometry described in Section 6.1 φ is defined by eq. (6.1).
In the second case, we have not a minimal coupling of the kind discussed in
Section 4.4. The real matrix M , that determines the masses of the Fermions,
may contain the Higgs fields. The matrices CγiΣa and CM may contain
γ5 and must be antisymmetric. M and Σa are invariant under SL(2C) and
commute with γ5.

The normal field equations are automatically satisfied and we have

πD = −iCγiΨηi. (5.37)

The tangential field equations take the form

A[ik]Ψ = −φΣ[ik]Ψ, (5.38)

AaΨ = −ΣaΨ, (5.39)

γiAiΨ − 2−1F k
ikγ

iΨ +MΨ = 0. (5.40)

We have used the formula (4.69). Note that the Dirac equation and the
transformation properties of the fields are field equations on the same footing.

The eigenvalues of h̄M are the Fermion masses, possibly after a change
of sign. It is important to remember that, given a classical field configura-
tion, in the corresponding quantum state, in the limit h̄ → 0, mass, energy,
momentum, charge and spin of a particle are proportional to h̄, while the
particle number density is proportional to h̄−1.

The Lagrangian form vanishes as a consequence of the field equations and
the energy-momentum, the angular momentum and the charges are described
the spatially localizable 3-forms of the kind (4.68) with

T ik = iAkΨ
TCγiΨ, (5.41)
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T i[jk] = iφΨTCΣ[jk]γ
iΨ = φǫijklW

l, (5.42)

T ia = iΨTCΣaγ
iΨ, (5.43)

θD[jk] = φ−1τD[jk] = ǫijklW
lηi. (5.44)

Note the following formula that we shall use in Section 6.1

∂λD

∂φ
= (2φ)−1ω[jk] ∧ τD[jk] = (2φ)−1T i[jk]ω

[jk] ∧ ηi. (5.45)

We have introduced a 6-vector with components

W u = 2−1iΨT Θ̆uΨ, (5.46)

W l = 2−1iΨTCγlγ5Ψ, W 4 = 2−1iΨTCΨ, W 5 = 2−1iΨTCγ5Ψ. (5.47)

All the bilinear forms that are trivial with respect to the internal indices
and imply only the geometric (spinor) indices are linear combinations of
the quantities W u, that are invariant with respect to the internal symmetry
transformations, including charge conjugation. They are natural candidates
to provide sources for the purely geometric (gravitational) fields. We have
seen in Section 5.1 that W i are the sources of torsion in the Einstein-Cartan
theory. It is natural to expect that the other components W u play a similar
role in gravitational theories with a higher symmetry group.

The other components of

θM[uv] = −i(Σ[uv]Ψ)TCγiΨηi (5.48)

do not appear in conservation laws derived by the Noether theorem, until
higher symmetries are present. However, they are useful in the following and
are given by

θM[45] = −W iηi, θM[k4] = −W 5ηk, θM[k5] = W 4ηk. (5.49)

If we apply eq. (4.63) to the infinitesimal transformations of the subgroup
U(1)5 generated by Σ45 (see eqs. (3.76) and (3.77)), we obtain the formula

dθM[45] = −iΨTCγ5MΨη, (5.50)

that can also be written in the form

AiW
i − F k

ikW
i = iΨTCγ5MΨ (5.51)
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and proven directly starting from the Dirac equation (5.40). We see that in
a theory in which all the Fermions are massless, the 3-form θM[45] is conserved.
This result takes also into account gravitational and other gauge fields, but
is not an application of the Noether theorem, because the gravitational La-
grangian is not symmetric under U(1)5.

5.5 Fermions in the Standard Model of ele-

mentary particles

In Chapter 7 we need some more details about the matrices Σa and M
that appear in the Lagrangian (5.36). They are completely specified in the
Standard Model of elementary particles [41], that explains with great precision
a very large amount of experimental data.

In its detailed formulation it is convenient to use complex Dirac fields
that can be decomposed into their real and imaginary parts:

ΨC = ΨR + iΨI , Ψ∗ = ΨR − iΨI , Ψ =

(

ΨR

ΨI

)

. (5.52)

In the rest of this Section we drop the subscript C and we assume that all
the Dirac fields are complex. We indicate by Σa and M complex matrices
that operate on complex fields. They have half the dimension of the matrices
indicated by the same symbols in the preceding Section. Note that not all
the real matrices can be considered as complex matrices with half dimension:
this possibility is a relevant physical assumption. We also adopt the standard
notation

Ψ = −iΨ†C Ψ† = Ψ∗T . (5.53)

It is easy to show that the Lagrangian

λD = 2−1dΨγiΨ ∧ ηi − 2−1ΨγidΨ ∧ ηi

−2−2φΨ(γiΣ[jk] + Σ[jk]γ
i)Ψω[jk] ∧ ηi

−ΨγiΣaΨω
a ∧ ηi − ΨMΨη, (5.54)

when written in terms of real fields takes the form (5.36). In a similar way
we get

T ik = −2−1AkΨγ
iΨ + 2−1ΨγiAkΨ, (5.55)

W l = −2−1Ψγlγ5Ψ, W 4 = −2−1ΨΨ, W 5 = −2−1Ψγ5Ψ. (5.56)
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A Dirac field can also be decomposed into the sum of two (necessarily
complex) left and right-handed Weyl fields

ΨL = 2−1(1 + iγ5)Ψ, ΨR = 2−1(1 − iγ5)Ψ. (5.57)

They transform separately under proper orthochronous Lorentz transforma-
tions (namely under SL(2,C)) and they satisfy separate Dirac equations only
for vanishing mass. A massless neutrino is described in the original version
of the Standard Model by a left-handed Weyl field that has no right-handed
partner. We, however, assume that neutrinos have a small mass.

In order to explain the absence of the parity symmetry in the weak in-
teractions, one assumes that the internal gauge symmetries have a chiral
character, namely they act in a different way on the left and right-handed
Weyl fields. This means that the matrices that represent the infinitesimal
transformations of the gauge group G = SU(2)W ×SU(3)C ×U(1)Y have the
form

Σa = 2−1(1 + iγ5)Σ
L
a + 2−1(1 − iγ5)Σ

R
a , (5.58)

where the anti-Hermitian matrices ΣL
a and ΣR

a represent two different repre-
sentations of the Lie algebra of G. Note that CγiΣa is anti-Hermitian, as it
must be in order to have a real Lagrangian.

In the following few formulas we write explicitly the weak isotopic spin
indices t3 = ±1/2 on which the 2-dimensional complex representation of
SU(2)W operates and the hypercharge indices y. We remember that the
electric charge is given by y/2 + t3. The two components of the Higgs field
have y = 1 and weak isotopic spin ±1/2. Note that both the spinors

(

Ξ1/2

Ξ−1/2

)

,

(

Ξ∗
−1/2

−Ξ∗
1/2

)

. (5.59)

transform according to the same representation of SU(2)W .
The same representation acts on the left-handed Fermion fields, while the

right-handed field are invariant under SU(2)W . It follows that the new fields

Ψ′
y+1 = v−1(ΨL

y,1/2Ξ−1/2 − ΨL
y,−1/2Ξ1/2) + ΨR

y+1,

Ψ′
y−1 = v−1(ΨL

y,1/2Ξ
∗
1/2 + ΨL

y,−1/2Ξ
∗
−1/2) + ΨR

y−1 (5.60)

are both invariant under SU(2)W . The hypercharge index y takes the value
−1 for leptons and 1/3 for quarks.
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For the potential of the Higgs field we adopt the expression

V (Ξ) = λ(Ξ†Ξ − v2)2, (5.61)

that takes its minimum value for Ξ†Ξ = v2 After the spontaneous symmetry
breaking, the Higgs field takes (for instance) the vacuum expectation value

< Ξ1/2 >= 0, < Ξ−1/2 >= v = v∗ (5.62)

and we have, disregarding fluctuations of the Higgs field around its vacuum
expectation value, Ψ ≈ Ψ′. It follows that the Fermions acquire their physical
masses if we put

h̄ΨMΨ = Ψ
′
KmK†Ψ′, (5.63)

where m is a diagonal mass matrix and K a unitary matrix that contains the
Cabibbo-Kobayashi-Maskawa (CKM) matrix that mixes the d, s, b quark fields
and possibly another matrix that mixes the neutrino flavours. By means of
this equation and eq. (5.60), it is easy to find an explicit expression in terms
of the Higgs field Ξ for the matrix M that appears in the Lagrangian. Note
that the expression (5.63) is invariant with respect to the internal symmetry
group and that the matrix CM is anti-Hermitian, as it is required in order
to obtain a real Lagrangian.

It is important to remark that in the Standard Model there is no natural
correspondence between the left handed and right handed Weyl fields that
permits a natural introduction of Dirac fields. This correspondence is gen-
erated by the mass term only after the Higgs field has acquired a vacuum
expectation value.

However, in order to introduce higher geometric symmetries, we have to
specify the action of SL(4,R) on the Dirac fields and this group contains
elements that do not commute with γ5 and mix Weyl fields with different
helicities. In other words, the SL(4,R) transformations do not commute
with the internal gauge transformations given by eq. (5.58). In Chapter 7 we
solve the problem by modifying this formula.
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Chapter 6

Theories with a variable
gravitational coupling

6.1 A geometrized scalar-tensor theory of grav-

itation

A very interesting class of generalizations of Einstein’s theory is based on the
replacement of the gravitational constant G by a variable scalar field [69–71].
A motivation for this assumption is the explanation of the extremely small
value of G when measured in atomic units (Dirac’s large numbers problem).
According to these theories, the value of the scalar field that replaces G
is determined by the distribution of matter in the universe, in agreement
with the ideas of Mach [103] on the influence of very far celestial bodies on
the locally observed phenomena. The best known Lagrangian scalar-tensor
theory of this kind has been proposed by Brans and Dicke [71] and theories
including torsion have been discussed in ref. [104].

We think that it is important to give to this scalar field a geometric
interpretation, by writing it as a function of the structure coefficients, in
agreement with the idea that all the structure coefficients should have a
dynamical relevance. In the discussion of this problem we also clarify some
concepts introduced in Chapters 2 and 3 and we introduce some ideas useful
for the developments of Chapter 7.

We have seen in Section 5.2 that one can include the coupling constants
of a Yang-Mills theory in the structure constants F c

ab of the gauge group. If
the coupling constant becomes a variable [105], these structure coefficients
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acquire a dynamical role. In a similar way, one can try to include the grav-
itational constant G, or the variable field that replaces it, in the structure
constants F

[mn]
[ik][jl] and F l

[ik]j of the Poincaré group. A theory of this kind,
equivalent, if spin is neglected, to the Brans-Dicke theory [71], has been
discussed in ref. [5]. Here we give a slightly different treatment.

We define the scalar field φ by means of the formula

φ = (12)−1gkjF i
[ik]j. (6.1)

Note that if F i
[ik]j = F̂ i

[ik]j, we obtain φ = 1. Since we want to preserve
the large amount of physical information contained in Einstein’s theory, we
consider a minimal modification of the Lagrangian form given by eqs. (5.1)
and (5.2). First of all, we replace the constants k, k1, . . . , k4 by suitable
functions of φ indicated by the same symbols. Note that adding a constant
to the functions k1 or k2 results in adding to the Lagrangian an irrelevant
exact form, that leaves the field equations unchanged.

Moreover, we have to add new terms to the Lagrangian, in order to obtain
the field equations that determine the field φ starting from the matter dis-
tribution in the universe and from suitable initial conditions. It seems that
these new terms should contain the derivatives Aiφ, but we want to avoid
the appearance in the Lagrangian of derivatives of the structure coefficients.
We try to use for the same purpose suitable functions of the structure co-
efficients, increasing in this way their physical role, in agreement with our
program.

The structure coefficients that appear in the forms dωα are not sufficient
and we have to introduce some other expressions χi. After several attempts,
one finds that it is convenient to put

χi = F k
ik (6.2)

and to add to the Lagrangian the expression

λχ = k5χiǫ
i
kjldω

k ∧ ωj ∧ ωl + k5φχiǫ
i
kjlgmnω

[km] ∧ ωn ∧ ωj ∧ ωl

+k5χiχ
iη, k5 6= 0, (6.3)

which contributes to both λH and λA. It may look strange to involve the
torsion tensor in the description of the variable gravitational coupling, but
we shall see that this procedure works.
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The derivatives of λ that appear in the normal field equation (4.28) con-
tain two contributions, one coming from the forms dωα and the other origi-
nated by the dependence on the quantities φ and χi, namely we have

∂λ

∂F η
ǫζ

= −2−1ωǫ ∧ ωζ ∧ ση +
∂λ

∂φ

∂φ

∂F η
ǫζ

+
∂λ

∂χi

∂χi
∂F η

ǫζ

, (6.4)

where

σ[ik] = 2(k − k1)ǫikjl ω
j ∧ ωl − 2k2ǫikjnglmω

[jl] ∧ ω[mn],

σi = 2k1ǫikjl ω
[kj] ∧ ωl + k5χkǫ

k
ijlω

j ∧ ωl. (6.5)

The first contribution satisfies the normal field equation automatically
and the second contribution gives the condition

(

∂φ

∂F η
ǫζ

ωθ +
∂φ

∂F η
θζ

ωǫ
)

∧
∂λ

∂φ
+

(

∂χi
∂F η

ǫζ

ωθ +
∂χi
∂F η

θζ

ωǫ
)

∧
∂λ

∂χi
= 0. (6.6)

By using the definitions of φ and χi and choosing the indices ǫ, ζ, η, θ in a
proper way, we obtain, for all the values of [jk]

ω[jk] ∧
∂λ

∂φ
= 0, ω[jk] ∧

∂λ

∂χi
= 0. (6.7)

For a given value of [jk], the condition ω[jk]∧α = 0 implies that the form
α is proportional to ω[jk]. If we require that this condition holds for all the
six values of [ik], either α vanishes or it is a form of degree not smaller than
6. In conclusion, we obtain the conditions

∂λ

∂φ
= 0, (6.8)

∂λ

∂χi
= 0, (6.9)

that are equivalent to the normal field equations.
We assume that λM does not depend on χi and that its dependence on φ

is given by eq. (5.45). The normal equation (6.9) involves only the additional
Lagrangian λχ and it is equivalent to the conditions

F l
[ik]j = φF̂ l

[ik]j, Fm
[ik][jl] = 0. (6.10)
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In order to obtain simpler and more consistent results, we choose the
functions k1, k2 and k3 in such a way that

k′3 = φ(k′ + k′1), k′2 = 0, k′ − k′1 6= 0, (6.11)

where k′ indicates the derivative of k with respect to φ. By taking into
account the formula (5.45), the normal equation (6.8) gives the conditions

F
[ik]
[jl][mn] = φF̂

[ik]
[jl][mn], (6.12)

2(k′ − k′1)F
[ik]
ik + k′4 + k′5χiχ

i = 0, (6.13)

4k′1φ(F i
jk+δ

i
jF

l
kl−δ

i
kF

l
jl)−2k5φ(χjδ

i
k−χkδ

i
j)−4(k′−k′1)φF

[il]
l[jk] = T i[jk]. (6.14)

From eqs. (6.10) and (6.12) and the special case J i[jk][mn]l = 0 of the
generalized Jacobi identity (1.55), we see that

A[ik]φ = 0, (6.15)

namely that φ is indeed a scalar field.
The eqs. (5.5), (5.6) and (5.7) are still valid and the explicit equations

(5.8) and (5.9) contain additional terms proportional to k5 and to the deriva-
tives of φ and χi. By performing the calculations, if the 10-momentum of
matter has the local form (4.68), from the vertical tangential equation we
obtain first of all the condition

4k(F i
jk + δijF

l
kl − δikF

l
jl) − 2k5φ(χjδ

i
k − χkδ

i
j)

−4(k′ − k′1)(Akφδ
i
j −Ajφδ

i
k) = T i[jk], (6.16)

which is compatible with the normal equation (6.14) only if

k′1φ = k, (6.17)

Akφδ
i
j − Ajφδ

i
k = φF

[il]
l[jk]. (6.18)

Continuing the analysis of the vertical tangential equation, we see that it
is compatible with eq. (6.10) only if we choose

k3 = φk. (6.19)
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If we take into account all the conditions found up to now, from the horizontal
tangential equation we obtain

φF
[pq]
i[jk] = Aiφ(δpj δ

q
k − δqj δ

p
k), (6.20)

4k(−F
[ik]
jk + 2−1δijF

[lk]
lk ) − 2k′5(χ

iAjφ− χkAkφδ
i
j)

−2k5(Ajχ
i − Akχ

kδij) + (k4 − k5χkχ
k)δij = T ij (6.21)

and eq. (6.18) follows as a consequence.
By using the conditions (6.10), from the generalized Jacobi identity (1.55)

we obtain the formula

J i[jk]li = A[jk]χl − F i
[jk]lχi + Ajφglk − Akφglj + φF

[pq]
q[jk]glp = 0, (6.22)

which combined with eq. (6.18) gives the condition

A[jk]χl = F i
[jk]lχi, (6.23)

showing that χl is a vector field.
Note that, if we put k5 = 0 from eqs. (6.13) and (6.21) we have the

condition
T ii = 4k4 − 2kk′4(k

′ − k′1), (6.24)

which is too restrictive, at least if massive particles are present. This means
that the introduction of the term (6.3), proportional to k5, in the Lagrangian
cannot be avoided

Attempts to generalize the above discussed model by introducing anisotropic
features of the gravitational field are discussed in ref. [108].

6.2 Macroscopic physical interpretation

From these rather boring calculations we have learned several important
lessons. We have shown that some scalar fields, which play a peculiar role in
modern physics [106], can be generated in a purely geometric way.

We have also seen that we have to carefully choose the Lagrangian in
order to get a consistent set of field equations that have a reasonably wide
set of solutions. In fact, since the action principle (4.15) must be satisfied
for an arbitrary choice of the integration surface S, one often obtains a too
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restrictive set of field equations. For instance, the choice of the matter La-
grangian is not independent of the choice of the geometric Lagrangian, since
eq. (5.45) is necessary in order to avoid a contradiction between the normal
equation (6.14) and the tangential equation (6.16)

Moreover, the functions k, k1, . . . , k5 cannot be chosen at will, but they
must satify eqs. (6.11), (6.17) and (6.19), which are not field equations, but
just limitations to the form of the Lagrangian. According to these conditions,
that are not independent, k, k4 and k5 can be chosen as arbitrary functions of
φ, but k3 is uniquely determined and k1, k2 are determined up to an irrelevant
additive constant, that adds to the Lagrangian an exact differential form.

We are interested in gravitational theories that do not contain the gravi-
tational constant G of Einstein’s theory and we also require that they do not
contain any other constant with nontrivial dimension (besides the velocity of
light). Then k has to be a power of φ and a possible numeric constant factor
can be absorbed in the definition of the forms ω[ik]. Taking into account the
above mentioned constraints, we put, as in ref. [5],

k = 2−2φm−1, k1 = 2−2(m− 1)−1φm−1,

k2 = 0, k3 = 2−2φm, m 6= 1. (6.25)

For m = 1, we have

k = 2−2, k1 = 2−2 log(φ/φ0), k2 = 0 k3 = 2−2φ, (6.26)

where φ0 is a dimensional constant that, however, is irrelevant.
Other interesting results follow from a dimensional analysis. We indicate

by [L] the dimension of time and lenght and by [M ] the dimension of mass,
energy and momentum. Since the coordinates of the manifold S are dimen-
sionless, the Lagrangian form has the dimension of an action. We have the
dimensional relations

[λ] = [LM ], [ωi] = [L], [χi] = [L−1]. (6.27)

It follows from eqs. (5.1) that

[ω[ik]] = [φ]−1 = [L−1/(2−m)M1/(2−m)], m 6= 2. (6.28)

For m = 2 the introduction of a dimensional coupling constant is inavoidable,
but this choice is already excluded by the conditions (6.11).
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From eqs. (5.2) and (6.3) we also have

[k4] = [L−3M ], [k5] = [L−1M ] (6.29)

and we have to put
k5 = −αφm−2, (6.30)

where α is a dimensionless constant. It is not possible to write k4, that
describes a cosmological term, as a function of φ without introducing a di-
mensional constant.

In order to write the field equations in a more familiar form, it is conve-
nient to introduce the new vector fields

Ã[ik] = φ−1A[ik], Ãi = Ai. (6.31)

As we have discussed in Section 2.2 and we shall see with more detail in
the next Section 6.3, this change of basis in the tangent spaces TsS may be
operationally unjustified from a microscopic point of view.

We also define the new differential 1-forms

ω̃[ik] = φω[ik], ω̃i = ωi (6.32)

and, by computing the commutators and taking into account the field equa-
tions (6.10), (6.12) and (6.20), we obtain the new structure coefficients

F̃ i
[ik]j = φ−1F i

[ik]j = F̂ i
[ik]j, F̃

[mn]
[ik][jl] = φ−1F

[mn]
[ik][jl] = F̂

[mn]
[ik][jl],

F̃m
[ik][jl] = 0, F̃

[mn]
j[ik] = F

[mn]
j[ik] − φ−1Ajφ(δmi δ

n
k − δni δ

m
k ) = 0.

F̃ j
ik = F j

ik, F̃
[mn]
ik = φF

[mn]
ik . (6.33)

They are compatible with a stucture of principal bundle of the manifold S
and the fields Ã[ik] are the generators of the structural group namely of the
Lorentz group.

We remark that, after the substitution (6.31), the field φ disappears from
the Fermion Lagrangian (5.36) and we obtain a theory with a minimal cou-
pling of the kind considered in Section 4.4. We also introduce the quantities

T̃ i[jk] = φ−1T i[jk], (6.34)

that describe the usual angular momentum, corresponding to the infinitesi-
mal transformations generated by −Ã[jk].

104



Expressed in terms of the new variables, the eqs. (6.13), (6.16), (6.21),
take the form

2−1F̃
[ik]
ik +

dk4

dΦ
− αχiχ

i = 0, (6.35)

ΦF i
jk + (1 − 2α)Φ(χkδ

i
j − χjδ

i
k) − (AkΦδ

i
j − AjΦδ

i
k) = T̃ i[jk], (6.36)

Φ(−F̃
[ik]
jk + 2−1δijF̃

[lk]
lk ) + 2α(χiAjΦ − χkAkΦδ

i
j)

+2αΦ(Ajχ
i −Akχ

kδij) + (k4 + αΦχkχ
k)δij = T ij , (6.37)

where the field Φ given by
Φ = φm−2 (6.38)

will be identified with the Brans-Dicke scalar field. After the change of basis
(6.31), it has lost its geometric character since it cannot be written as a
function of the new structure coefficients. The fields χi are still given by eq.
(6.2). The locally measured gravitational constant is G = (8πΦ)−1. In some
treatments, the factor 8π is included in the definition of Φ and it appears in
the field equations.

Note that the dependence of the various coefficients on φ and in particular
the exponent m have disappeared from these equations. This means that
the choice of the fundamental fields A[ik] is ambiguous in this macroscopic
context, as we discuss in the next Section 6.3.

If we consider only Dirac spinning particles, from eq. (5.42) we see that
eq. (6.36) is equivalent to the equations

F i
jk + 3−1(χkδ

i
j − χjδ

i
k) = Φ−1ǫijklW

l, (6.39)

(2 − 6α)χi − 3Φ−1AiΦ = 0. (6.40)

Assuming α 6= 1/3, we have

F i
ki = χk = −ωΦ−1AkΦ, (6.41)

where
ω = 3(6α− 2)−1. (6.42)

These equations show that the idea of replacing the derivatives of the scalar
field by the vector part of torsion was correct.

We see from eq. (6.35) that, even in the absence of spinning particles,
the torsion may not vanish. Since it does not appear in the Brans-Dicke
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equations, in order to compare them with our formulas, we have to eliminate
torsion by changing again the choice of the fundamental vector fields, namely
by introducing a torsionless connection, by means of the substitution

Ăk = Ak − 3−1χiÃ[ik], Ă[ik] = Ã[ik]. (6.43)

Note that, since Φ is a scalar field and χi is a vector field,

ĂkΦ = AkΦ, Ăkχi = Akχi + 3−1χkχi − 3−1χjχ
jgik. (6.44)

By computing the Lie brackets of the new fields and using eq. (6.39) with
W l = 0, we obtain the new structure coefficients

F̆ i
jk = 0, (6.45)

F̆
[il]
jk = F̃

[il]
jk − 3−2χmχ

m(δijδ
l
k − δikδ

l
j)

−3−1(Ăjχ
iδlk − Ăkχ

iδlj − Ăjχ
lδik + Ăkχ

lδij)

+3−2(χjχ
iδlk − χkχ

iδlj − χjχ
lδik + χkχ

lδij). (6.46)

By means of these formulas and of eq. (6.41), we can write eqs. (6.35)
and (6.37) in the form

−F̆
[ik]
ik + 2ωΦ−1ĂjĂ

jΦ − ωΦ−2ĂjΦĂ
jΦ − 2

dk4

dΦ
= 0, (6.47)

Φ(−F̆
[ij]
kj + 2−1F̆

[jl]
jl δ

i
k) − ĂkĂ

iΦ + ĂjĂ
jΦδik

−ωΦ−1(ĂkΦĂ
iΦ − 2−1ĂjΦĂ

jΦδik) + k4δ
i
k = T ik (6.48)

and, as a consequence, also taking eq. (6.41) into account, we obtain

(3 + 2ω)ĂiĂ
iΦ = T ii − 4k4 + 2Φ

dk4

dΦ
. (6.49)

These are just the field equations of the Brans-Dicke theory [71], with the
addition of a variable cosmological term.

The elimination of torsion by means of a different choice of the funda-
mental vector fields (namely of the connection) is not completely harmless,
since the motion of spinning test particles may be influenced by torsion [37].
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A comparison with astronomical measurements in the solar systems gives
a rather high lower bound on the dimensionless parameter ω. Recent data
from Cassini-Huygens spacecraft give ω > 4 × 104 [109]. This means that
α ≈ 1/3 and the field Φ is approximately constant. Then the limit ω → ∞
or α → 1/3 of the Brans-Dicke equations is physically very interesting, but
it is not trivial [110].

In our geometric approach, however, we can introduce the choice α = 1/3
from the begining directly in eq. (6.30), in the Lagrangian (6.3) and in eqs.
(6.35), (6.37) and (6.39). From eq. (6.40) we see that AkΦ = 0, namely
Φ = (8πG)−1 is constant. From eq. (6.20) and (6.2) we also obtain

F
[il]
l[jk] = 0, χi = F α

iα. (6.50)

In this way, we obtain a theory with a constant gravitational coupling,
that is not determined by the theory, but by the initial conditions. It also
has a dynamical torsion, since the quantities χi, that represent the 4-vector
part of the torsion, are true dynamical variables and their derivatives appear
in the field equations. Theories with a dynamical torsion have been proposed
by various authors.

If the spin density vanishes, by introducing the new fields Ăα, we obtain
the equations

Φ(−F̆
[ij]
kj + 2−1F̆

[jl]
jl δ

i
k) + k4δ

i
k = T ik (6.51)

−2ΦĂiχ
i = T ii − 4k4 + 2Φ

dk4

dΦ
. (6.52)

These equations can also be obtained from the Brans-Dike equations (6.48)
and (6.49) by introducing the substitution ωΦ−1ĂiΦ → −χi before perform-
ing the limit ω → ∞.

The first formula is just the field equation of general relativity. The
second formula determines only partially the vector field χi that, since torsion
has been eliminated, has lost its geometric meaning and does not give any
contribution to the source of the gravitational field. These properties of χi
are hardly acceptable from the physical point of view. One may suggest
that the model in not complete and that new terms have to be added to the
Lagrangian. We shall consider again this suggestion in Chapter 7.
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6.3 Microscopic considerations and dilatations

of T .

As we have discussed if Section 2.2, the choice of the fundamental vector fields
that determine the absolute parallelism structure of S cannot be arbitrary
if the minimum time necessary to perform physical operations cannot be
neglected. In fact, if we consider the above described theory as a macroscopic
approximation of a more complete theory in which the cone T + and the
constant ℓ play a nontrivial role, the fields Aα used to define the cone have
to be unambiguously specified (up to a transformation of GL(4,R)). Then
also the field φ and the exponent m acquire a physical relevance.

The constant ℓ that appears in the definition of T + has dimension

[ℓ] = [ωi][ω[ik]]−1 = [L][φ] = [L1+1/(2−m)M−1/(2−m)] (6.53)

and in general it is not a length. The acceleration and the angular velocity
of a frame are defined in terms of the fields Ã[ik] and therefore the maximal
acceleration introduced by T + is given by φℓ−1 and may depend on the point.

In a theory with variable couplings, one has to decide which parameters
are really constant and which are variable fields. Our point of view (not
shared by some authors [107]) is that the velocity of light c = 1 and the
parameter ℓ should be really constant, because they determine the structure
of T +, namely of the fundamental causal structure of the geometry.

In order to avoid serious problems with the quantization procedure, Planck’s
constant too has to be really constant. If one wants to avoid the proliferation
of fundamental constants (an economy principle), an appealing choice is

m = 4, ℓ = νh̄1/2, (6.54)

where ν is an adimensional factor, presumably of the order of one. We get in
this way a classical theory “prepared” for quantization, and the quantization
procedure should determine the possible values of ν. As we have noted in
Section 2.4, a similar situation also appears in classical theories with constant
gravitational coupling G and a fixed fundamental length ℓ.

In ref. [5] the different choice m = 1 has been suggested, starting from
considerations based on Mack’s principle. One assumes that the forms ω[0r]

do not measure directly the acceleration of a frame, but the force per unit of
gravitational mass acting on the object associated to the frame. The forms
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ω̃[0r] introduced above measure the acceleration, namely the force per unit of
inertial mass and the ratio φ−1 between the two forms gives the ratio between
the inertial and the gravitational mass. According to Mack’s principle, the
inertia is determined by the matter present in the universe and is proportional
to the field Φ, that satisfies the field equation (6.49) in which the energy-
momentum of the cosmic matter provides the source. In conclusion, we have,
with suitable normalizations, Φ = φ−1, namely m = 1.

Note that in the model we are considering, assuming that the coefficient
k4 vanishes or is proportional to φm, the gravitational Lagrangian form is an
homogeneous functions of degree m of the structure coefficients. It follows
that it has a simple behavior under the dilatations of the vector space T ,
that we call total dilatations, since they imply dilatations of both the vertical
and the horizontal subspaces. Note that the cone T + is invariant under total
dilatations, but not under separate vertical or horizontal dilatations. The
infinitesimal total dilatations are given in terms of the infinitesimal parameter
ζ by

δAα = ζAα, δωα = −ζωα, δF γ
αβ = ζF γ

αβ,

δφ = ζφ, δχi = ζχi,

δλH = (m− 4)ζλH, δλA = (m− 4)ζλA. (6.55)

It is interesting to investigate the behavior of the other parts of the La-
grangian form under total dilatations. For the Dirac Lagrangian (5.36) we
put

δΨ = 2−1(m− 1)ζΨ, δωa = 0, δΞ = ζΞ,

δλD = (m− 4)ζλD. (6.56)

Note that we have to assume that the basis vectors Aa of the extended vector
space T are not affected by the dilatations. We also have to assume a specific
transformation property of the Higgs field Ξ. With the same assumptions we
find that the Lagrangian (5.14) of the internal gauge fields is invariant and
the Lagrangian (5.26) of the Higgs scalar field is also invariant if we disregard
the potential term −V (Ξ)η.

In conclusion, if we put m = 4, the complete Lagrangian form of gravi-
tation and elementary particles is invariant, apart from the terms containing
the cosmological constant and the Higgs potential (one can redefine the Higgs
potential in such a way that it includes the cosmological constant). If we take
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these terms into account, we have

δλ = −δ(V (Ξ)η) − δ(k4η) = ζ(−4λv2(Ξ†Ξ − v2) + 4k4)η, (6.57)

where we have adopted the expression (5.61) for the Higgs potential and we
have assumed that k4 is constant. This simple result is a further indication
that m = 4 is an interesting choice.

Note that the potential term that is necessary in order to obtain the
spontaneous symmetry breaking of the internal gauge symmetry is also re-
sponsible for the explicit symmetry breaking of the total dilatation symmetry.
If one likes to preserve the total dilatation symmetry, one has to invent a dif-
ferent way to generate a nonvanishing vacuum expectation value of the Higgs
field Ξ.

For instance, it could have a cosmological origin, as it happens for the
Brans-Dicke field Φ. However, a model of this kind would imply the existence
of unobserved zero mass Higgs particles. Note that also the Brans-Dicke field
should describe unobserved zero-mass particles. In any case, it is very diffi-
cult to modify the Standard Model of elementary particles without spoiling
its very good agreement with the experimental observations. A serious dis-
cussion of these problems lies outside the scope of the present notes.

In analogy with eq. (4.41), one can define (using the real formalism) the
3-form

θD = −ωi ∧ σi − 2−1ω[ik] ∧ σ[ik] + ΞTπS. (6.58)

Note that the internal gauge fields and the Dirac fields do not contribute.
For m = 4 we have some relevant cancellations and we obtain (introducing
the complex formalism for Ξ)

θD = 6αΦχiηi − 2−1Ai(Ξ†Ξ)ηi. (6.59)

This form is conserved (namely it is closed) only if δλ = 0. Otherwise we
have

dθD = (−4λv2(Ξ†Ξ − v2) + 4k4)η. (6.60)

Note that the right hand side vanishes if k4 = 0 and Ξ takes its vacuum
expectation value.

By means of eq. (4.69) we obtain the more explicit formula

6αAi(Φχ
i) − 6αΦχiχ

i − 2−1AiAi(Ξ
†Ξ) + 2−1χiAi(Ξ

†Ξ)

= −4λv2(Ξ†Ξ − v2) + 4k4. (6.61)
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The same equation can also be obtained directly from the field equations,
but the derivation given above helps us to understand their meaning and
may suggest further developments.

6.4 Lagrangian constraints and pre-symplectic

double forms

It is interesting to apply the pre-symplectic formalism described in Section 4.5
to the specific models defined in the preceding Sections. We consider first
the Einstein-Cartan theory of Section 5.1. The normal equations (6.5) do
not contain the “velocities” namely the structure coefficients, and therefore
coincide with the primary constraints. By sustituting them into eq. (4.79),
we obtain

θ′ = kǫikjl d̂ω
[ik] ∧ ωj ∧ ωl − k1ǫikjld̂(ω

[ik] ∧ ωj ∧ ωl)

+3−1k2ǫikjnglmd̂(ω
[ik] ∧ ω[jl] ∧ ω[mn]) + 2k5χ

kd̂ηk. (6.62)

Since we have k5 = 0 and the other coefficients k, k1, k2 are constant, we
obtain immediately the pre-symplectic double form

Ω′ = −d̂θ = kǫikjl d̂ω
[ik] ∧ d̂(ωj ∧ ωl) = 2kǫikjl d̂ω

[ik] ∧ d̂ωj ∧ ωl. (6.63)

One must keep in mind that only the restriction of this form to the 3-
dimensional surface Σ contributes to the pre-symplectic form Ω(Σ).

In the scalar-tensor theory of Sections 6.1 and 6.2 the coefficients are given
by eqs. (6.25) and (6.30) and the normal equations contain the structure
coefficients through the fields φ and χk. In order to obtain the constraint
equations, we have to express them as functions of the “canonical momenta”
σα, for instance (for m 6= 1, 2) by means of the equations

ǫmniki(Am)i(An)σik = 24(m− 2)(m− 1)−1φm−1, (6.64)

ǫmniki(Am)i(An)σi = 12αφm−2χk, (6.65)

that follow from eq. (6.5). Remember that the vector fields Aα are uniquely
determined by the 1-forms ωα.

In this way we obtain the pre-symplectic double form

Ω′ = 2−2ǫikjld̂(φ
m−1) ∧ d̂ω[ik] ∧ ωj ∧ ωl + 2−2φm−1ǫikjl d̂ω

[ik] ∧ d̂(ωj ∧ ωl)

−2−2(m− 1)−1ǫikjld̂(φ
m−1) ∧ d̂(ω[ik] ∧ ωj ∧ ωl)

−2αd̂(φm−2χk) ∧ d̂ηk. (6.66)
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If we introduce the new variables Φ and ω̃ik by means of eqs. (6.32) and
(6.38), after some calculations, we get

Ω′ = 2−2ǫikjl d̂ω̃
[ik] ∧ d̂(Φωj ∧ ωl) − 2αd̂(Φχk) ∧ d̂ηk. (6.67)

Through this change of variables (that depends onm) we have obtained a pre-
symplectic form that, as the field equations, does not contain the parameter
m. This means that m should also be absent in an hypothetic quantized
theory, as soon as a parameter ℓ is not introduced.

If n > 10, namely if internal gauge fields are present, one has to take into
account the primary constraint following from eq. (5.12), namely

i(A[ik])σa = i(Ab)σa = 0. (6.68)

The contribution of the internal gauge fields to the pre-symplectic double
form is formally unchanged, namely

Ω′ = d̂ωa ∧ d̂σa, (6.69)

but it is defined in the submanifold Γ′. It may be difficult to find the con-
nection with the primary constraint of the usual formalism in the spacetime
M. It is based on a different choice of the unconstrained phase space Γ, but
what is relevant is the physical phase space.

If there is a scalar field Ξ of the kind described in Section 5.3, from eq.
(5.28) we obtain the primary constraints

i(A[ik])π
S = i(Ab)π

S = 0 (6.70)

and the contribution to the pre-symplectic double form maintains the form

Ω′ = d̂ΞT ∧ d̂π. (6.71)

Finally, we have to consider the Dirac fields. Eq. (5.37) does not contain
the “velocities“ and therefore provides directly the primary constraint. The
contribution to the pre-symplectic double form is

Ω′ = −id̂ΨTCγi ∧ d̂Ψηi. (6.72)

A new feature is that the fields Ψ are anticommuting and this expression does
not vanish because the matrices Cγi, according to eq. (3.15), are symmetric.
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Chapter 7

Classical field theories with
Sp(4,R) symmetry (not
complete)

7.1 Higher symmetries and a substitution rule

In Section 2.5 we have introduced the geometric symmetry group of the field
equations FG and in Section 3.3 we have suggested that it is a subgroup of
the symmetry group GL(4,R) of the cone T +. In the present Chapter we
deal with field theories with a geometric symmetry group FG larger than the
Lorentz group. In this way we introduce the new fundamental constant ℓ.

A detailed analysis of the possible geometric symmetry groups containing
the Lorentz group was given in ref. [6]. Since at that time the explicit forms
of the cone T + and of its symmetry group were not known, one had to
consider all the sugroups of the group GL(10,R) containing all the linear
transformations of T and a definite choice could not be obtained. In this
analysis the most relevant group GL(4,R) was omitted and an erratum [6]
was published to correct this mistake.

The higher symmetry theories should not contradict the normal Lorentz
symmetric theories treated in Chapter 5 in their range of validity. Einstein’s
General Relativity has been confirmed with high precision by laboratory
experiments, for instance on the equivalence principle, and by accurate ob-
servations of the planetary system and of the binary pulsars. For an updated
review, see ref. [109]. The Einstein-Cartan theory is not, at present, ex-
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perimentally distinguishable from General Relativity and we prefer it in the
present notes only because it gives a more symmetric treatment of energy-
momentum and spin, in agreement with the equity principle (see Section 2.4).
Also the Brans-Dicke scalar-tensor theory cannot be distinguished from Gen-
eral Relativity if the parameter ω is sufficently large.

There is some possibility for modifications of Einstein’s gravitational the-
ory at very small distances, or very large curvatures, and at very large dis-
tances, which appear in the galactic and cosmological observations. It may
look strange that the phenomena at very large distance can be influenced by
the introduction of a very small fundamental length. It is possible, however,
that very small local effects due to the fundamental length accumulate over
very long distances giving observable effects. This idea has been discussed,
in a different context, in ref. [111].

In the search of new theories, it is important to take into account a
“correspondence principle” that requires that the old theory is, in some way,
a limit of the new theory. The simplest example is the nonrelativistic limit of
a relativistic particle. If we consider the particle Lagrangians as differential
1-forms and we reintroduce the symbol c for the velocity of light, we have

lim
c→∞

(

−mc2(1 − c−2‖ẋ‖2)1/2dt+ d(mc2t)
)

= 2−1m‖ẋ‖2dt, (7.1)

namely the limit of the Lorentz invariant Lagrangian, after the subtraction of
a divergent exact form, gives the nonrelativistic Lagrangian. The contraction
of the Lorentz group is the Galilei group and under the Galilei transformation

x → x + vt (7.2)

we have

2−1m‖ẋ‖2dt→ 2−1m‖ẋ‖2dt+ d
(

mv · x + 2−1m‖v‖2t
)

. (7.3)

We see that the new Lagrangian is quasi-invariant, namely invariant up to
an additional exact form that does not affect the equations of motion.

We could expect a similar situation when we consider the normal limit
ℓ → 0 of a theory with higher symmetry, but the Lagrangian forms of the
normal theories examined in Chapter 5 are not quasi-invariant with respect
to any of the contracted transformations given by eqs. (3.81) and (3.82). This
remark could be discouraging, but we have to consider that our problem has
some more complications. In particular, as we have remarked in Section 3.7,

114



the higher symmetry group is spontaneously broken and there are several
nonsymmetric vacuum states. It follows that it is not sufficient to consider
the limit ℓ → 0, but one has also to choose one of the degenerate vacuum
states. The new Lagrangian should approach the old Lagrangian only for
configurations which are, in some sense, near to one of the vacuum states,
that becomes the unique vacuum state of the old theory. In this way the
quasi-invariance of the old Lagrangian with respect to the contracted high-
symmetry group is lost.

In order to obtain a gravitational Lagrangian form with higher symmetry
by means of a minimal modification of a known Lorentz invariant Lagrangian
form of the kind considered in Chapter 5, one can rewrite the latter by using
the spinor formalism, namely introducing the forms ω(AB) and the structure
coefficients F

(EF )
(AB)(CD). The expression obtained in this way must also contain

the antisymmetric constant Lorentz invariant spinors CAB and GAB defined
in Sections 3.3 and 3.5, that, however, are not invariant under GL(4,R). A
Lagrangian symmetric under a larger group can be obtained by replacing
these constant spinors by antisymmetric spinor expressions obtained from
the structure coefficients by means of the rules of the spinor calculus. We
call this procedure the substitution rule.

Of course, the new expressions must be very near to the constant quan-
tities C or G in the physical situations in which the old theory is valid, in
particular in the Poincaré vacuum. As a matter of fact, it is impossible
to find an expression that replaces G, because it is odd under space inver-
sion (represented by γ0) while the Poincaré structure constants are invariant
under space inversion. Instead, a very natural replacement for C can be
found in terms of the spinor tAB defined in Section 3.7 by eq. (3.89). If
we replace only C, we obtain a Lagrangian symmetric with respect to the
subgroup of GL(4,R) that leaves G invariant, namely the axial symplectic
group Sp(4,R)A introduced in Section 3.6. It is possible that theories invari-
ant with respect to GL(4,R) or SL(4,R), can be found in a more general
geometric scheme, but some new idea is necessary.

Actually, in the construction of Lagrangians symmetric with respect to
Sp(4,R)A it is convenient to use the 5-vector fu defined by eq. (3.93) instead
of the 6-vector tu equivalent to the antisymmetric spinor tAB, because we
have fi = 0 in all the theories cosidered in Chapter 5. With this choice, the
substitution rule takes thye form

C → φ−1fuΘ̆
u = φ−1C(f4 + fiγ

iγ5) = C(ψ4 + ψiγ
iγ5), (7.4)
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where
φ = (−fuf

u)1/2, ψu = φ−1fu, ψuψ
u = −1. (7.5)

As a consequence, we also have

γ5 = G−1C → (ψ4γ5 − ψiγ
i). (7.6)

This substitution tends to an equality in the limit

ψ → ψ̂ = (0, 0, 0, 0, 1), (7.7)

in particular when the geometry of S approaches the geometry of a principal
bundle of frames, as we have shown in Section 3.7. We are assuming the
inequality

(f4)
2 > fif

i, (7.8)

that is satisfied if the structure coefficients are not too different from the
structure constants of the Poincaré group. We cannot assume ψ4 ≥ 0, be-
cause a transformation of Sp(4,R)A can change the sign of this variable. We
shall often use an approximation in which the quantities ψi are infinitesimal
and ψ4 − 1 is infinitesimal of the second order.

The substitution rule can also be treated in a more abstract and general
way, also working for the matter fields. We indicate by Z all the geometric
objects and the other dynamical fields on which the Lagrangian λ depends
and by ∆(a) the representation of Sp(4,R)A acting on them. A normal
Lagrangian form λ(Z) of the kind treated in Chapter 5 has the Lorentz
invariance property

λ(∆(a)Z) = λ(Z), a ∈ SL(2,C). (7.9)

After the substitution rule, we obtain the new Lagrangian form λ(Z, ψ) that
also contains the normalized 5-vector ψ and is defined by

λ(Z, ψ) = λ(∆(a)Z), (7.10)

where a is an element with the properties

a ∈ Sp(4,R)A, ∆(a)ψ = ψ̂. (7.11)

Since the 5-vector ψ̂ is Lorentz invariant, this condition determines the ele-
ment a up to the multiplication on the left by an element of SL(2,C), but
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this ambiguity does not influence the result because λ satisfies the invariance
relation (7.9). We have λ(Z, ψ̂) = λ(Z) and

λ(∆(a)Z,∆(a)ψ) = λ(Z, ψ), a ∈ Sp(4,R)A, (7.12)

namely the new Lagrangian is invariant under Sp(4,R)A. These two prop-
erties characterize the result of the substitution rule.

We can also apply the substitution rule to other Lorentz invariant ex-
pressions, to be used as building blocks in the construction of invariant La-
grangians. In particular starting from the 4-form η defined in Section 0.3 one
obtains

η(ψ) = −(24)−1ℓ4ψu′ψv′ψw′ψx′ψ
yǫuvwxyω

[uu′5]∧ω[vv′5]∧ω[ww′5]∧ω[xx′5]. (7.13)

One can immediately see that this expression is invariant under Sp(4,R)A
and that η(ψ̂) = η.

We shall also use the 3-forms

ηα(ψ) = i(Aα)η(ψ) (7.14)

with the properties
ηi(ψ̂) = ηi, η[ik](ψ̂) = 0. (7.15)

Another useful formula is
(

∂η(ψ)

∂ψi

)

ψ=ψ̂

= −ℓω[ik5] ∧ ηk = 2−1ℓǫikjlω
[jl] ∧ ηk. (7.16)

7.2 Normal field equations and use of the sym-

metry property.

The Lagrangians studied in Chapter 5 have a particular structure that per-
mits a simpler treatment of the normal field equations. In the present Chap-
ter too, we consider Lagrangian of the form

λ = dωα ∧ σα + λA + λM , (7.17)

where the quantities σα, λ
A, and λM contain, besides the forms ωα, the field

φ defined by eq. (7.5) and the fields

χα = F β
αβ , χi = F j

ij + 2−1F
[jl]
i[jl], χ[ik] = F j

[ik]j + 2−1F
[jl]
[ik][jl]. (7.18)
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Note that these fields are not exactly equal to the fields indicated by the same
symbols in eqs. (6.1) and (6.2). They have similar properties, but transform
in a simpler way. After the application of the substitution rule, also the fields
ψu appear in the Lagrangian. Instead of the fields φ and ψu, one can use
directly the fields fu.

The derivatives of λ with respect to the structure coefficients that appear
in the normal field equation (4.28) contain two contributions, one coming
from the exterior derivatives dωα and the other originated by the dependence
of λ on the quantities fu and χα. The first contribution satisfies the normal
field equations automatically and the second contribution gives the condition

(

∂fu
∂F η

ǫζ

ωθ +
∂fu
∂F η

θζ

ωǫ
)

∧
∂λ

∂fu
+

(

∂χα
∂F η

ǫζ

ωθ +
∂χα
∂F η

θζ

ωǫ
)

∧
∂λ

∂χα
= 0, (7.19)

or, more explicitly, by using the 5-dimensional tensor notation and eqs. (3.93)
and (7.18),

α
(

(δvuǫyy′
v′ww′

− δv
′

u ǫyy′
vww′

− δwu ǫyy′
w′vv′ + δw

′

u ǫyy′
wvv′)ω[xx′5]

+(δxuǫyy′
x′ww′

− δx
′

u ǫyy′
xww′

− δwu ǫyy′
w′xx′ + δw

′

u ǫyy′
wxx′)ω[vv′5]

)

∧ ∂λ
∂fu

+β
(

(δvv
′

uu′δ
ww′

yy′ − δww
′

uu′ δ
vv′

yy′ )ω
[xx′5]

+(δxx
′

uu′δ
ww′

yy′ − δww
′

uu′ δ
xx′

yy′ )ω
[vv′5]

)

∧ ∂λ
∂χ[uu′5]

= 0, (7.20)

where α and β are irrelevant constant coefficients and

δvv
′

uu′ = δvuδ
v′

u′ − δvu′δ
v′

u . (7.21)

We fix arbitrarily the indices u = v = y and x 6= x′, and without loss of
generality we assume, for instance, that u 6= x. Then we chose y′ 6= y, x, x′

and v′ 6= v, x, x′, y′. We choose the other indices w,w′ in such a way that
y, y′, v′, w, w′ are all different. Then only the first term of eq. (7.20) survives
and we have

ω[xx′5] ∧
∂λ

∂fu
= 0. (7.22)

By reasoning as in the case of eq. (6.8) we obtain

∂λ

∂fu
= 0. (7.23)
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In order to treat the second part of eq. (7.19), we write it in the form

(

(δǫαδ
ζ
η − δζαδ

ǫ
η)ω

θ + (δθαδ
ζ
η − δζαδ

θ
η)ω

ǫ
)

∧
∂λ

∂χα
= 0. (7.24)

We choose arbitrarily the indices α = ζ and θ. It is always possible to put
ǫ = η 6= α, θ and we obtain

ωθ ∧
∂λ

∂χα
= 0. (7.25)

It follows that
∂λ

∂χα
= 0. (7.26)

For the particular kind of Lagrangians we are considering, eqs. (7.23)
and (7.26) are equivalent to the normal equation (4.28). By introducing the
variables φ, ψi, eq (7.23) can also be written in the form

∂λ

∂ψi
= 0 (7.27)

∂λ

∂φ
= 0. (7.28)

From eq. (7.17) and the normal field equations (7.23) and (7.26) we have

∂λ

∂F γ
αβ

=

(

∂λ

∂F γ
αβ

)

E

= −2−1ωα ∧ ωβ ∧ σγ (7.29)

in agreement with eq. (4.31). The subscript E means that the partial deriva-
tive takes into account only the explicit dependence of λ on the structure
coefficients and not the indirect dependence through the quantities fu and
χα.

The conservation laws corresponding to the infinitesimal Sp(4,R)A sym-
metry transformations play an important role in the following discussion.
As it is explained in Section 4.5, these transformations are generated by the
vector fields X[uv] (in the phase space) that act on the dynamical variables
in the following way

X[uv]ω
[xy5] = δxugvzω

[zy5] + δyugvzω
[xz5] − δxvguzω

[zy5] − δyvguzω
[xz5],

X[uv]φ = 0, X[uv]ψw = guwψv − gvwψu,

X[uv]χ[xy5] = gxuδ
z
vχ[zy5] + gyuδ

z
vχ[xz5] − gxvδ

z
uχ[zy5] − gyvδ

z
uχ[xz5]. (7.30)
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According to eq. (4.41), this symmetry gives rise to the conservation laws

dθ[uv] = 0, θ[uv] = θG[uv] + θM[uv], (7.31)

where
θG[uv] = X[uv]ω

α ∧ σα, θM[uv] = X[uv]Ψ
UπU . (7.32)

These conservation laws, are a consequence of all the field equations and
we want to show that, when all the other field equations are satisfied, the
normal equation (7.27) is equivalent to the following equation that sometimes
has an easier treatment and a more direct meaning:

ψudθ[uv] = 0. (7.33)

We use the invariance property of λ, which, using the shorthand notation
introduced in Section 7.1, can be written in the form

X[uv]λ = X[uv]Z
∂λ

∂Z
+X[uv]ψw

∂λ

∂ψw
= 0, (7.34)

or, more explicitly,

X[uv]Ψ
U ∂λ
∂ΨU +X[uv](AαΨ

U) ∂λ
∂AαΨU

−2−1X[uv]F
γ
αβω

α ∧ ωβ ∧ σγ +X[uv]ω
αiαλ+X[uv]ψw

∂λ
∂ψw

= 0, (7.35)

where eqs. (7.26) and (7.29) have been taken into account.
By means of the normal field equation (4.29) and of the tangential equa-

tions (4.34), (4.35) and (4.36), we obtain

d(X[uv]Ψ
UπU ) −AαΨ

U(X[uv]ω
α) ∧ πU + d(X[uv]ω

α) ∧ σα

+F γ
αβX[uv]ω

α ∧ ωβ ∧ σγ +X[uv]ω
αiαλ+X[uv]ψw

∂λ
∂ψw

= d(X[uv]Ψ
UπU) − (X[uv]ω

α) ∧ τα

+d(X[uv]ω
α) ∧ σα +X[uv]ψw

∂λ
∂ψw

= 0 (7.36)

and finally

dθ[uv] + (guwψv − gvwψu)
∂λ

∂ψw
= 0. (7.37)

If the normal equation (7.27) is satisfied (as well as all the other field
equations) this is just a new proof of the conservation of θ[uv]. Conversely,
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if we assume eq. (7.33), we easily obtain the normal equation (7.27), as we
have anticipated above.

In the analysis of the field equations, a considerable simplification can
be obtained by choosing an adapted basis in the space T by means of a
suitable (global) transformation of the symmetry group Sp(4,R)A. In this
way, assuming the inequality (7.8), we can put, at a single distinguished point
ŝ ∈ S, fi = 0 or ψi = 0. At this point the Lagrangian form λ is not affected
by the substitution rule. Besides λ, also π, σα, θ[uv], and τα have, at the
particular point ŝ, the same form they have before the application of the
substitution rule. In particular, the quantities τMα have the local form (4.68).

However, one has to be careful in dealing with expressions containing
derivatives with respect to ψi or other differential operators applied to ex-
pressions containing ψi: one has to compute the derivatives first and then to
put ψi = 0. For instance, the field equations and the conservation laws may
contain new terms that do not vanish at the point ŝ. In order to compute
them, we need the derivatives of various quantities with respect to ψi at the
point ŝ.

In some simple cases, these derivatives can be obtained directly or by
means of eq. (7.16). They can also be obtained by means of the covariance of
these quantities with respect to the infinitesimal transformations X[j4] given
by

X[i4]Ψ = Σ[i4]Ψ,

X[i4]ω
j = −2−1ℓǫj iklω

[kl], X[i4]ω
[jk] = −ℓ−1ǫjkilω

l,

X[i4]χj = −2−1ℓ−1ǫji
klχ[kl] X[i4]χ[jk] = −ℓǫjki

lχl. (7.38)

X[i4]π = −ΣT
[i4]π,

X[i4]σj = −2−1ℓ−1ǫji
klσ[kl], X[i4]σ[jk] = −ℓǫjki

lσl,

X[i4]θ[jk] = gikθ[j4] − gijθ[k4], X[i4]θ[j4] = θ[ji]. (7.39)

By using the shorthand notation introduced at the end of Section 7.1,
since at the point ŝ it is

X[i4]ψk = gikψ4 = gik, X[i4]ψ4 = ψi = 0, (7.40)

we obtain, at the same point,

∂π
∂ψi = −ΣT

[i4]π − ∂π
∂Z
X[i4]Z,
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∂σj

∂ψi = −2−1ℓ−1ǫji
klσ[kl] −

∂σj

∂Z
X[i4]Z,

∂σ[jk]

∂ψi = −ℓǫjki
lσl −

∂σ[jk]

∂Z
X[i4]Z,

∂θ[jk]

∂ψi = gikθ[j4] − gijθ[k4] −
∂θ[jk]

∂Z
X[i4]Z,

∂θ[j4]
∂ψi = θ[ji] −

∂θ[j4]
∂Z

X[i4]Z. (7.41)

In many situations the “old” theory, considered before the application
of the substitution rule, agrees with a good accuracy with the empirical
data. As a consequence, it is important to understand the conditions under
which the solutions of the “old” theory are also solutions of the “new” theory
obtained by means of the substitution rule. For these solutions we have
ψ = ψ̂ and the corrections to the field equations, proportional to derivatives
of ψ vanish. However, the “new” theory has the additional normal equation
(7.27), equivalent to the conservation law (7.33), that in the case we are
considering takes the form dθ[i4] = 0. If and only if it astisfies this equation
a solution of the “old” theory is also a solution of the “new” theory.

7.3 Two examples of Lagrangians invariant

under Sp(4,R)A.

In ref. [6] two Lagrangians with Sp(4,R)A symmetry have been suggested,
showing that the corresponding theories have the Poincaré vacuum solution,
besides the degenerate vacuum solutions obtained from it by the action of the
symmetry group. The existence of nonvacuum solutions was not investigated,
due to mathematical difficulties, and in the present Chapter we continue this
study using the concepts developed in the preceding Sections. We find that
these models are not completely satisfactory, but they provide a basis for the
construction of more acceptable theories.

We use the conventions we have adopted in the present notes and the
5-dimensional tensor calculus for SO(2, 3)V described in Section 3.6. In par-
ticular we use the 5-vectors fu, ψu defined by eqs. (3.93), (7.5) and the
notation ω[uv5] for the 1-forms ωα, in analogy with eq. (3.69). The index 5 is
added for compatibility with the 6-dimensional formalism and to recall that
the other two indices take the values u, v = 0, . . . , 4 and transform according
to SO(2, 3)A.
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The first Lagrangian is

λH = −2ℓ2kψxψyguu′gvv′dω
[uv5] ∧ ω[xu′5] ∧ ω[yv′5],

λA = ℓ2kψxψyψ
zguu′ǫvv′ww′zω

[ww′5] ∧ ω[uv5] ∧ ω[xu′5] ∧ ω[yv′5]. (7.42)

It contains the fields ψu, but not the field φ and the normal equation (7.28)
is trivially satisfied. We have seen in Section 7.2 that the normal equation
(7.27) is equivalent to the conservation of θ[uv] and we do not need to consider
it. If the normal field equations are satisfied, we have

σ[uv5] = −4ℓ2kψxψyguu′gvv′ω
[xu′5] ∧ ω[yv′5]. (7.43)

In order to find the primary constraints, we have to express the quantity
ψxψy, that contains the structure coefficients, in terms of the “canonical
momenta.” From eq. (7.43) we have

guu
′

gvv
′

i(A[xu′5])i(A[yv′5])σ[uv5] = 24ℓ2kψxψy (7.44)

and the pre-symplectic double form can be written as

Ω′ = −d̂θ′ = −2ℓ2kguu′gvv′ d̂ω
[uv5] ∧ d̂(ψxψyω

[xu′5] ∧ ω[yv′5]), (7.45)

θ′ = −2ℓ2kψxψyguu′gvv′ d̂ω
[uv5] ∧ ω[xu′5] ∧ ω[yv′5]. (7.46)

One can see that for ψ = ψ̂ the Lagrangian (7.42) coincides with the
Regge-Ne’eman Lagrangian given in eqs. (5.1) and (5.2) with k1 = k2 =
k4 = 0 and k3 = k and the pre-symplectic form (7.45) coincides with eq.
(6.63). It follows that the model we are considering can be obtained from
the Regge-Ne’eman Lagrangian by means of the substitution rule.

The conserved 3-forms (7.32) are

θG[uv] = î(X[uv])θ
′ = gvwω

[ww′5] ∧ σ[uw′5] − guwω
[ww′5] ∧ σ[vw′5]

= −4ℓ2kψxψy(guu′gvv′ − guv′gvu′)gww′ω[v′w5] ∧ ω[xu′5] ∧ ω[yw′5]. (7.47)

An important consequence is

ψuθG[uv] = 0 (7.48)

showing that a solution of the Einstein-Cartan theory is also a solution of
the theory we are considering if and only if dθM[4k] = 0. From eqs. (4.69) and
(5.49) we obtain

θM[4k] = W 5ηk, dθM[4k] = (AkW
5 − F j

kjW
5)η + φW 5gknω

[mn] ∧ ηm. (7.49)
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In the model we are considering we have F j
kj = 0 and φ = 1, but these

terms are necessary in the second model. We see that the condition is simply
W 5 = 0.

From the conservation law (7.32) we obtain

dψu ∧ θG[uv] = ψudθM[uv]. (7.50)

and we see that if the 5-vector ψu is constant, the right hand side must
vanish. In order to discuss this equation with more detail, we choose an
adapted basis in TŝS, so that at the particular point ŝ we have ψ = ψ̂ and
therefore, in the 4-dimensional Lorentz formalism,

θG[4i] = 0, θG[ik] = 2k(gijǫklmn − gkjǫilmn)ω
[mn] ∧ ωj ∧ ωl, (7.51)

dψi ∧ θG[ik] = 4k(gimδ
p
kδ
q
n + ginδ

q
kδ
p
m − gkmδ

p
i δ
q
n − gknδ

q
i δ
p
m)Apψ

iω[mn] ∧ ηq

+k(gijǫklmn − gkjǫilmn)A[pq]ψ
iω[pq] ∧ ω[mn] ∧ ωj ∧ ωl. (7.52)

In the absence of Fermion fields, this expression must vanish and, after
some calculations, we find that the derivatives of ψi must vanish too. If this
happens in a connected region of S, in this region we have ψi = 0 and all the
equations coincide with the ones examined in Chapter 5. It is interesting to
consider a situation in which the Fermion fields are very small and therefore
ψi is very small too and eq. (7.49) has an approximate validity. A comparison
of the preceding equations gives the approximate results, valid in an adapted
frame,

AkW
5 = 0, A[ik]ψj = 0, Aiψk = (2k)−1W 5gik. (7.53)

From this equation we learn that the quantity W 5, related to the Fermion
spin, is responsible for the appearance of nonvanishing (or nonconstant) val-
ues of ψi. If in a connected region W 5 = 0, the theory is perfectly equivalent
to the Einstein-Cartan theory. We shall see in Chapter 9 that W 5 is ex-
tremely small if one excludes the interior of stars and the first few minutes
of the big bang. It follows that the model presented in the present Section
is in agreement with the observations.

Unfortunately, eq. (7.53) shows that W 5 must be a constant and this
in an unacceptable condition on the Fermion fields. We conclude that the
model is (at least) incomplete and that other gravitatinal degrees of freedom
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must be introduced in order to obtain a correct matching of the two sides of
eq. (7.50). The first candidates are the fields χα defined in eq. (7.18), as we
discuss in the following Section.

The second Lagrangian proposed in ref. [6], symmetric under total dilata-
tions as in eq. (6.55), is

λH = −2−1ℓ2φm−1(ψxψy + (m− 1)−1gxy)guu′gvv′dω
[uv5] ∧ ω[xu′5] ∧ ω[yv′5],

λA = 2−2ℓ2φmψxψyψ
zguu′ǫvv′ww′zω

[ww′5] ∧ ω[uv5] ∧ ω[xu′5] ∧ ω[yv′5]. (7.54)

One can see that for ψ = ψ̂ it coincides with the Lagrangian studied in
Sections 6.1 and 6.2 with

k = 2−2φm−1, k1 = 2−2(m− 1)−1φm−1,

k2 = −ℓ2k1, k3 = 2−2φm, k4 = k5 = 0. (7.55)

Note that the field φ is defined in a different way. If we also take the limit
ℓ→ 0, we obtain the model of Section 6.2 without the cosmological term and
the Lagrangian λχ proportional to k5. We have shown in Section 6.1 that a
model with k5 = 0 has problems if massive particles are present and is, in
any case, in disagreement with observations that suggest a very large value
of the parameter ω.

In analogy with the first model, we have

σ[uv5] = −ℓ2φm−1(ψxψy + (m− 1)−1gxy)guu′gvv′ω
[xu′5] ∧ ω[yv′5], (7.56)

θG[uv] = −ℓ2φm−1ψxψy(guu′gvv′ − guv′gvu′)gww′ω[v′w5] ∧ ω[xu′5] ∧ ω[yw′5] (7.57)

and eqs. (7.48) and (7.50) are valis also in this case.
It is interesting to examine, as in the first model, the approximate explicit

form of eq. (7.50) for small values of W 5 and of ψi and we obtain

AkW
5 = F j

kjW
5, A[ik]ψj = 0, Aiψk = 2φ1−mW 5gik. (7.58)

In this approximation the scalar-tensor theory of Sections 6.1 and 6.2 is
approximately valid an we can use, eq. (6.41) to obtain the relation

Ak lnW 5 = F j
kj = −ωAk ln Φ, Φ = C(W 5)−1/ω. (7.59)

where C is a constant. This means that in an empty region, where W 5 → 0,
we have Φ → ∞ or Φ → 0, according to the sign of ω. This unacceptable
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feature can be avoided only if 1/ω → 0 (as it is suggested by the astronomical
observations) namely if α = 1/3. In the model we are considering, without
the additional term (6.3), we have α = 0 and ω = −3/2. This argument
suggests that we have to add to the Lagrangian the additional term (6.3)
with the appropriate coefficient.
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Chapter 8

Test particles in geometric
fields (not ready)

See ref. [8, 10, 21, 22, 24].
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Chapter 9

Cosmological applications (not
ready)
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Chapter 10

Graded field algebras and
antiderivations (not ready)

See ref. [15].
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Chapter 11

Quantum fields in a fixed
geometric background (not
ready)

See ref. [12, 16, 17].
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[49] F. Lurçat: Quantum Field Theory and the Dynamical Role of Spin.
Physics 1 (1964) 95.
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ideal accelerated clock, 51
ideal clock, 51
infinitesimal transformations, 31
integrable distribution, 32
integral manifolds, 32
internal degree, 20
internal gauge theory, 87

Lagrangian form, 70
leaf, 32
left translations, 23
Lie derivative, 41
local section, 18
local spacetime interpretation, 33
Lorentz vertical degree, 20

Mack’s principle, 108
Maurer-Cartan one-forms, 15
Maxwell 2-form, 69
Maxwell equations, 89
measurement, 29
measurement procedures, 29
metricity condition, 16
minimal coupling, 75
minimum time principle, 38
Minkowski spacetime, 22
modified geometry, 47
moving frame, 10

normal field equations, 71
normal geometry, 26
normal limit, 114

orientable manifold, 11

parallel transport, 16
passive transformations, 11, 24
phase space, 78
physical equivalence, 34
pre-symplectic space, 81
preparation procedure, 43
primary Lagrangian constraints, 81
primary local spacetime coincidence,

34
principal fiber bundle, 10
procedures, 29
projection mapping, 10
pseudo-Finslerian space, 52
pseudo-norm, 52

reciprocal influence, 55
regular cubic coordinate system, 33
relational geometry, 29
relativistic angular momentum, 24
relativity principle, 30
repère mobile, 10
restricted measurement procedures, 54
restricted measurements, 54
reversible infinitesimal transformations,

46
Riemann curvature tensor, 17
right translations, 23

scalar field, 90
scalar-tensor theory, 98
secondary local spacetime coincidence,

34
situation, 29
soldering form, 22
space of motions, 78
spacelike submanifold, 55
spacetime coincidence, 32
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spatially localized quantity, 68
spin connection coefficients, 18
spin structure, 12
spinor, 11
spinors, 56
spontaneous symmetry breaking, 65
Standard Model, 95
strictly operational interpretation, 29
structural group, 10
structure coefficients, 20
structure equations, 22
subsolution, 39
substitution rule, 115
symplectic double form, 79
symplectic form, 78

tangential field equations, 72
teleparallelism, 27
tetrad, 9
time orientable manifold, 10
torsion form, 22
torsion tensor, 17
total degree, 20
total dilatations, 109
transformation procedures, 29
transformations, 29
trivialization, 27

vacuum state, 39
vector symplectic subgroup, 60
vertical reflection, 60
vertical subpace, 19
vertical tangential equations, 86
Vierbein, 9

wedge, 45
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