IMPORTANZA DELLE PREVISIONI TECNOLOGICHE NEI PROCESSI PRODUTTIVI ¹

1. Introduzione

Caratteristica saliente dell'epoca odierna sembra essere quella della transitorietà. E-spansione, andamento «esplosivo", ecc., sono termini correnti nelle analisi delle situazioni economiche, sociali, tecniche. Ne segue che nell'attività operativa umana hanno assunto particolare importanza la precisazione del futuro e la pianificazione a medio e lungo termine.

Nel campo dell'attività produttiva rivestono particolare importanza i cambiamenti nei prodotti e nei processi produttivi resi via via possibili dagli sviluppi scientifici e tecnici. Ciò è rispecchiato anche dall'uso sempre più diffuso che viene fatto dal termine «innovazione tecnologica». Per innovazione tecnologica s'intende qualsiasi cambiamento di un certo rilievo nei prodotti o nei processi, derivato e reso possibile da attività di ricerca scientifica e tecnologica.

Le spinte alla innovazione tecnologica in un'azienda sono molteplici: dalla concorrenza per ottenere prestazioni e costi competitivi dei prodotti; dalla ricerca scientifica per trarre vantaggio da nuovi ritrovati; dalla necessità di soddisfare esigenze particolari di mercato o sociali, ecc.

L'innovazione deve essere introdotta nei processi e nei prodotti dell'azienda possibilmente in anticipo rispetto alla concorrenza. L'azienda può in linea di principio acquisire l'innovazione dall'esterno, o derivarla da propria attività di ricerca. Occorre tuttavia, in particolare in quest'ultimo caso, poter prevedere le «direzioni» dell'innovazione tecnologica, per poter pianificare l'attività di ricerca.

Ci si può chiedere entro quali limiti abbia senso parlare di fattibilità di previsioni nel campo scientifico e tecnologico, in una situazione apparentemente caratterizzata da rapidi mutamenti ed "esplosioni" delle conoscenze.

Può essere pertanto utile premettere alcune considerazioni sul processo innovativo, prima di passare in rassegna le metodologie a disposizione per l'attività di previsione tecnologica e l'illustrazione di alcuni casi riferiti ai processi produttivi.

2. Innovazione tecnologica

a) Caratteri salienti

Nell'ultimo secolo vi è stata un'accelerazione nel processo di innovazione nel senso che si è ridotto il tempo intercorrente tra la data della scoperta di processi fondamentali e quella dello sviluppo commerciale di applicazioni pratiche derivanti da detta scoperta. Ciò è schematizzato in fig. 1

¹ Intervento al Seminario Preparatorio dei Corsi della Scuola Mediterranea di Tecnologia, L'Aquila- Monteluco, 24 Ottobre 1970

Si possono tuttavia trovare dei casi che contraddicono l'esistenza di detto accorciamento nel processo di accelerazione, come indicato in tab. 1.

L'aspetto più importante dell'accelerazione dell'innovazione tecnologica, pertanto, va visto piuttosto nell'aumentata frequenza dei ritrovati innovativi, il che è dovuto anche all'aumento esponenziale nelle spese di ricerca e sviluppo (cfr. fig. 2, riferita agli USA).

L'innovazione tecnologica ha carattere generale nel senso che ha investito tutti i settori produttivi. Tuttavia, esiste una diversità da settore a settore (cfr. tab. 2), alcuni più lentamente progredenti di altri. In corrispondenza a ciò si nota anche un diverso investimento in spese di ricerca nei diversi settori industriali (cfr. tab. 3).

Le conseguenze principali dell'innovazione tecnologica si possono così riassumere:

- enorme aumento di prodotti nuovi in particolare tra i beni di consumo;
- complessità crescente dei prodotti;
- introduzione di nuove tecnologie per migliorare le prestazioni tecniche dei prodotti in un dato settore (es.: evoluzione dei motori a combustione esterna, fig. 3; evoluzione degli acceleratori di particelle, fig. 4);
- rottura delle delimitazioni classiche disciplinari, con creazione di nuove discipline derivanti spesso dall'unione di più di esse (sinergismo, cfr. fig. 5);
- aumento della complessità dei processi tecnologici produttivi, delle tolleranze richieste (cfr. fig. 6; fig. 7) e dell'affidabilità dei prodotti;
- effetti delle innovazioni di un settore in altri settori (cfr. fig. 8);
- crescente interrelazione tra sviluppi tecnologici e ambiente (alcuni esempi sono indicati in tab. 4).

b) Posizione dell'azienda di fronte all'innovazione tecnologica

L'innovazione disponibile non sempre è immediatamente introdotta nell'azienda. Infatti, la necessità d'ingenti investimenti per impianti complessi, tipici dei processi produttivi odierni, tende al rallentamento della pratica utilizzazione delle innovazioni. Si ha cioè una tendenza a progredire a gradini, come indicato per alcuni casi in fig. 9.

La concorrenza di aziende che possono rinnovare impianti vecchi usando tecnologie nuove funge d'altra parte da stimolo per l'introduzione di tecnologie nuove (si veda ad esempio l'effetto della adozione di metodi LD per la produzione dell'acciaio in Europa in anticipo sugli USA).

Per non essere tagliata fuori dalla possibilità di innovare per tempo, ogni azienda deve sempre più investire in spese di ricerca. Il crescente rapporto tra spese di ricerca e fatturato (cfr. ad esempio fig. 10 per il caso farmaceutico), rende necessaria una maggiore efficienza nella ricerca stessa e ciò pone come conseguenza sia una tendenza ad aumentare le dimensioni dell'azienda (raggruppamenti. fusioni) sia a pianificare la ricerca.

L'attività creativa razionale può essere schematizzata come composta da quattro fasi (cfr. fig. 11), a monte dell'azione la decisione e a monte di questa la pianificazione. A monte della pianificazione è necessaria un'attività di previsione; da qui l'importanza

della previsione dei cambiamenti tecnologici nella pianificazione della ricerca industriale.

La previsione dei cambiamenti tecnologici può essere fatta partendo dall'esame delle tendenze di cambiamenti delle varie tecnologie (previsione esplorativa) o partendo dal. l'esame dei fabbisogni (previsione normativa) (cfr. fig. 12).

Nel primo caso, dall'esame delle tendenze si cerca di determinare quali siano le possibili pratiche applicazioni che ne possono derivare; nel secondo caso si esaminano i prodotti e sistemi alternativi per soddisfare i bisogni, e quali siano le deficienze tecnologiche per realizzare -detti sistemi e prodotti.

La previsione tecnologica tende quindi a prevedere in ogni caso applicazioni pratiche (prodotti). Nel caso che il prodotto sia destinato al processo produttivo, l'innovazione è spinta sia dai fabbricanti, ad esempio di macchine utensili, sia dagli uffici metodi produttivi delle aziende utilizzatrici.

3. La previsione dei cambiamenti tecnologici

a)Fattibilità della previsione

L'innovazione è un processo che passa attraverso vari stadi, che vanno dalla scoperta fondamentale, alle ricerche di laboratorio, alla realizzazione dei prototipi, allo sviluppo commerciale dei prodotti (cfr. tab. 5).

Dalla dimostrazione della fattibilità concettuale di un nuovo prodotto alla sua pratica realizzazione commerciale passa un periodo di tempo che difficilmente è molto breve. Si può a titolo indicativo considerare in media un tempo dell'ordine del decennio.

Se si è pertanto interessati a previsioni di applicazione di nuove tecnologie in un arco di tempo limitato (meno di un decennio), molto probabilmente esistono già più soluzioni tecniche alternative concettuali o provate in scala di laboratorio. L'attività previsionale in questo caso non è altro che una valutazione delle possibilità di successo di idee già sviluppate.

Un esempio in questo senso è riportato in fig. 13, riferentesi al caso dello sviluppo della produttività nelle lavorazioni di rimozioni di metallo.

L'estrapolazione degli andamenti storici riportata in figura è stata fatta nel 1960. Un decennio dopo la tendenza di progresso è stata mantenuta grazie all'introduzione delle macchine utensili a controllo adattativo.

E' da notare che all'epoca in cui era stata fatta l'analisi estrapolativi, il concetto del controllo adattativo era già noto, ma non ancora sviluppato industrialmente.

Più difficile è invece la previsione a lungo termine, in particolare se riguarda scoperte nuove di carattere fondamentale.

Quest'ultimo tipo di previsione, di cui viene dato un esempio in fig. 14, riveste un interesse orientativo generale, ma la previsione a termine più breve ha un'importanza pratica maggiore.

b) Metodologia della previsione tecnologica

Nell'attività previsionale è necessario innanzitutto definire lo scopo della previsione e che cosa va previsto.

In molti casi ciò si ottiene attraverso una analisi strutturale del sistema o prodotto all'esame (si veda un esempio di ciò in fig. 15) per determinare le tecnologie alternative e, sceltane una, quali sono i parametri tecnici più significativi su cui esercitare l'indagine di previsione di sviluppo delle tendenze (cfr. ad esempio fig. 16).

La previsione ha spesso una funzione di creatività indicando linee nuove di sviluppo e soluzioni alternative a tecnologie esistenti. Ciò viene spesso ottenuto da un attento esame e correlazione dei fattori ambientali, anche non tecnici, e della tecnologia.

In fig. 17 è mostrato un esempio di come si possono correlare tra loro fattori diversi, come guida per individuare aree in cui esistano deficienze tecnologiche, e su cui sia pertanto opportuno concentrare le ricerche.

Tra le tecniche utilizzate per la previsione tecnologica si ricordano:

- estrapolazione delle tendenze storiche dei parametri tecnici (cfr. ad es. fig. 16);
- alberi di importanza o rilevanza;
- indagine Delphi.

L'indagine Delphi è un metodo per confrontare l'opinione di un gruppo di persone su argomenti materia di opinione (come la predizione di eventi futuri) cercando di ottenere, per quanto possibile, una convergenza di opinioni.

In tab. 6 è fornito il risultato di una indagine Delphi svolta qualche anno fa per la previsione di eventi interessanti i processi produttivi.

La metodologia degli alberi di importanza consiste essenzialmente nel condurre una analisi strutturale del problema o "sistema" allo studio, cercando di organizzare i rapporti tra sistema e sottosistemi in termini "gerarchici", e ad ogni livello "gerarchico" identificare le alternative possibili. Un esempio è fornito in fig. 15, in cui i livelli gerarchici sono di tipo tecnico. In fig. 18 é dato un altro esempio di strutturazione in albero in termine di gerarchia di "obiettivi". La fig. 17 dà un'indicazione di come si possa sistematicamente costruire degli «alberi», cercando quali correlazioni possano esistere rilevanti per il caso in esame, tra una elencazione generale di obiettivi o funzioni o tecnologie.

L'«importanza» di un certo «ramo» dell'albero può essere espressa anche in modo qualitativo-quantitativo, cercando di esprimere numericamente l'«opinione» sul peso di un ramo rispetto agli altri ad un dato livello, e correlando detto peso con quello dei rami di livelli superiore cui quello in esame è correlato.

4. Innovazione e processi produttivi

a) Il processo produttivo come sistema

Per applicare la metodologia della previsione tecnologica, occorre innanzi tutto, come detto sopra, considerare il problema allo studio come un «sistema». Nei processi produttivi dell'industria chimica è naturale pensare che essi formino un sistema in quanto

le varie componenti dell'impianto stesso sono fisicamente collegate tra loro. In altri settori industriali, come ad esempio nell'industria meccanica, risulta invece meno intuitivo considerare il processo produttivo come un sistema data l'importanza dell'intervento umano come collegamento tra le varie macchine operatrici.

Tuttavia il progresso nel campo dei processi produttivi è condizionato sia dallo sviluppo di tecnologie specifiche sia dalla sperimentazione globale del processo produttivo considerato come un sistema.

La possibilità di trasferire il concetto di sperimentazione su impianto prototipo, dal campo dell'industria chimica ad altri settori industriali, è dimostrato dall'esistenza e dallo sviluppo di laboratori di ricerca aventi detto scopo (ad esempio *l'Engineering Development Laboratories* della *Western Electric*). In tab. 7, si elencano alcune delle funzioni e capacità che dovrebbero caratterizzare un laboratorio di ricerca sui processi produttivi meccanici.

I casi illustrati brevemente nel seguito fanno particolare riferimento al caso dei processi produttivi dell'industria meccanica.

Il sistema produttivo può essere considerato come un sistema con tre livelli (cfr. tab. 8), cui corrispondono attività tecnologiche e di studio diverse:

- analisi dei sistemi;
- processi di produzione;
- tecnologie per operazioni base sui materiali e sulle parti.

b) Principali linee dell'innovazione

Nel prossimo futuro ci si può aspettare che il progresso dei processi produttivi origini soprattutto dall'analisi del processo stesso considerato come un sistema integrato, il che è facilitato anche dalla progressiva introduzione della automazione.

Si nota quindi una tendenza all'integrazione delle funzioni produttive (ad esempio: e-voluzione dei metodi di fabbricazione di nastri metallici, usando la metallurgia delle polveri).

Per quanto riguarda le particolari tecnologie c'è d'aspettarsi sia un miglioramento nelle tecnologie esistenti sia l'estensione dell'applicazione di tecnologie nuove.

Una sintesi di dette tendenze è fornita in tab. 9.

In tab. 10, sono elencate alcune tecnologie con probabilità di sviluppo nel prossimo futuro superiori alla media.

5. Esame di alcuni casi di analisi di previsioni e tendenze dei cambiamenti tecnologici nei processi produttivi

a) Materiali

Negli ultimi anni si è notata una tendenza a certi miglioramenti nelle prestazioni dei materiali (cfr., ad esempio, tab. 11) come conseguenza anche delle più onerose condizioni d'esercizio richieste (ad esempio: alta temperatura) (cfr. tab. 12).

I materiali sintetici tendono sempre più a sostituire nel campo dei materiali chimici sostanze naturali: si veda ad esempio lo sviluppo degli elastometri.

L'analisi Delphi è stata utilizzata per valutare lo sviluppo dei materiali chimici sia organici che inorganici (cfr. tab. 13).

b) Tecnologie

Lavorazione metalli.

La tecnica di estrapolazione delle tendenze di parametri caratteristici è stata utilizzata per valutare gli sviluppi nelle prestazioni tecniche di macchine per la lavorazione dei metalli (cfr. fig. 13, e figg. 19, 20, 21).

Processi di giunzione.

L'importanza della saldatura come mezzo di giunzione in sostituzione di altre tecniche è in continuo aumento sia per l'introduzione di nuove tecnologie di saldatura sia per il miglioramento di quelle esistenti che ne riducono i costi ed aumentano la qualità. In tab. 14, si fornisce un elenco di tendenze qualitative di alcuni processi di saldatura.

Formatura per pressioni ultra elevate.

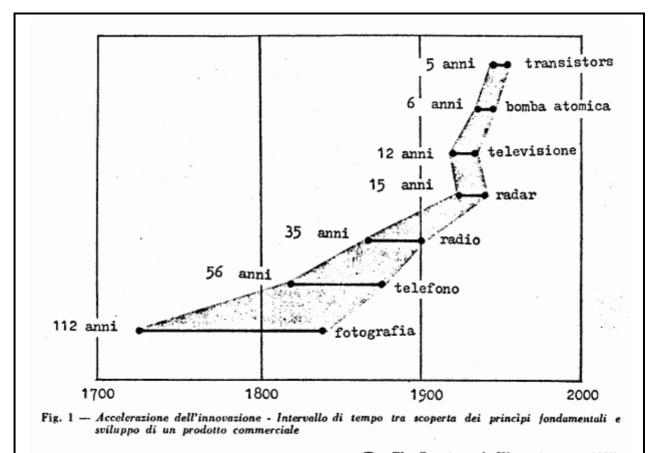
Un esempio di tecnologia nuova il cui campo di applicazione si sta estendendo è rappresentato dall'utilizzazione delle elevatissime pressioni, in particolare nel campo della formatura dei metalli.

c) Processi

Metallurgia polveri.

Un notevole sviluppo sta avendo in settori diversi l'applicazione della metallurgia delle polveri (cfr. tab. 15).

Processi microbiologici.


Un esempio della necessità di varcare i limiti disciplinari è rappresentato dalla importanza crescente dei processi microbiologici nei processi produttivi (cfr. tab. 16).

L'esempio mostra anche l'importanza dei fattori ambientali (preoccupazione crescente per l'inquinamento) sugli sviluppi tecnologici.

Automazione.

Lo sviluppo dell'automazione rappresenta uno degli avvenimenti principali nel progresso dei processi produttivi.

In fig. 22, sono elencati gli eventi nel futuro prossimo e lontani nel campo della automazione, come previsti da un'indagine Delphi. In fig. 23, è data un'estrapolazione delle tendenze di mercato per i "robot" industriali.

(Da: The Futurist, vol. IV, n. 4, agosto 1970)

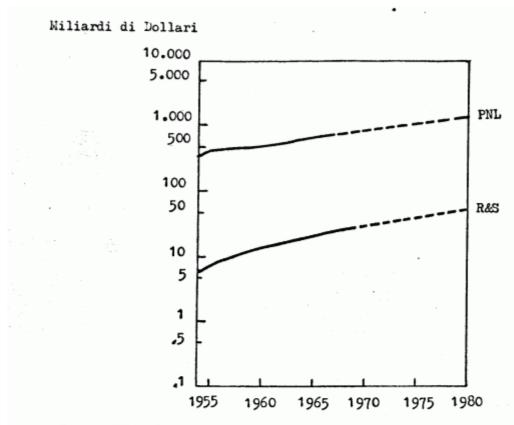


Fig. 2 — USA - Prodotto nazionale lordo (PNL) e spese per ricerca e sviluppo (R&S)
(Da: J. R. Bright, Technological Forecasting for Industry and Government, pg. 84)

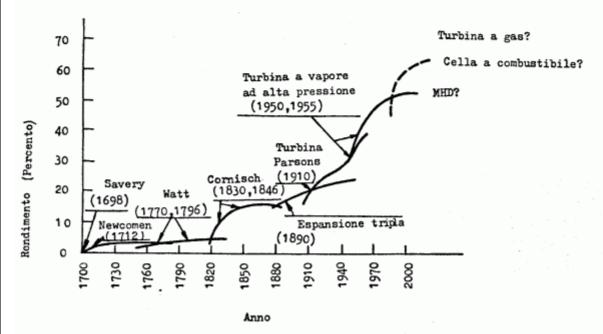


Fig. 3 — Efficienza dei sistemi di conversione di energia a combustione esterna

(Da: J. R. Bright, Technological Forecasting for Industry and Government, pg. 82)

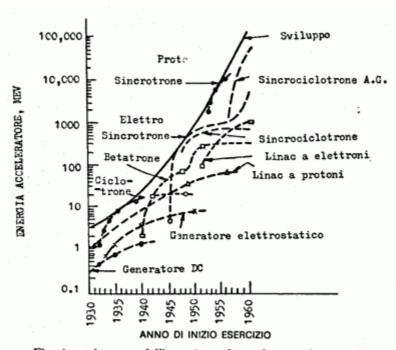


Fig. 4 — Aumento dell'energia negli acceleratori di particelle

(Da: J. R. Bright, Technological Forecasting for Industry and Government, pg. 78)

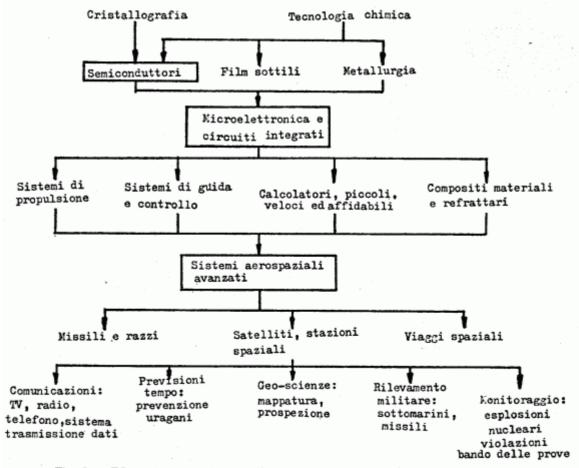
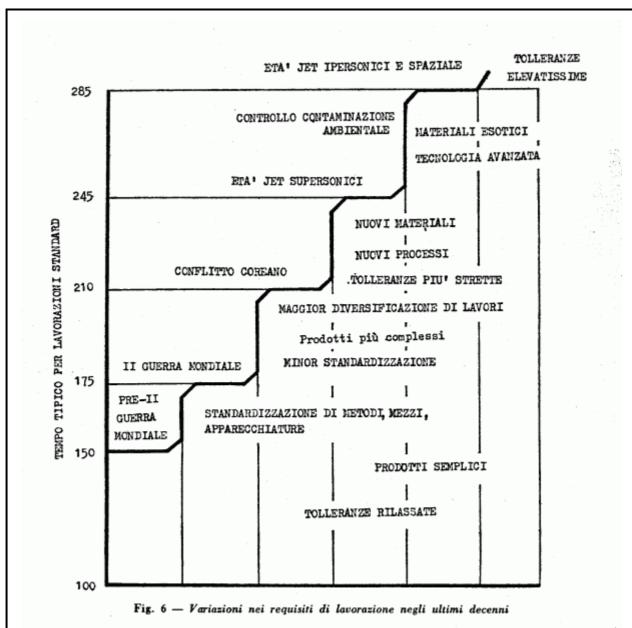
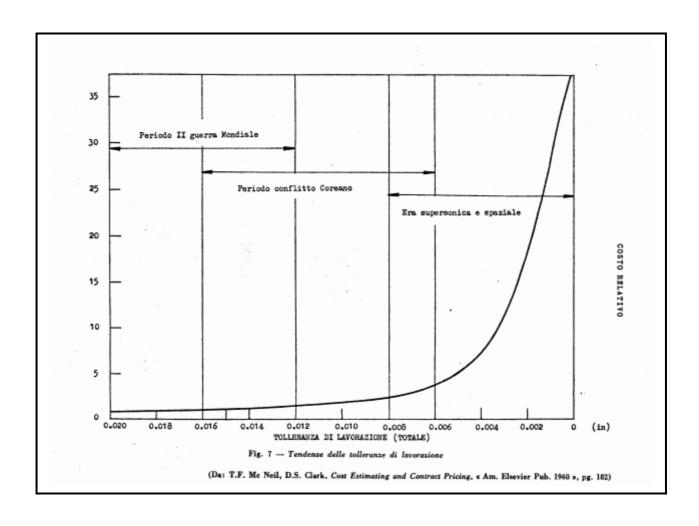
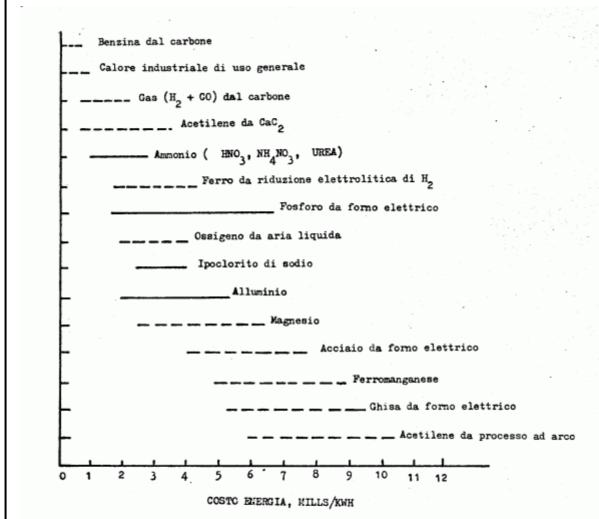
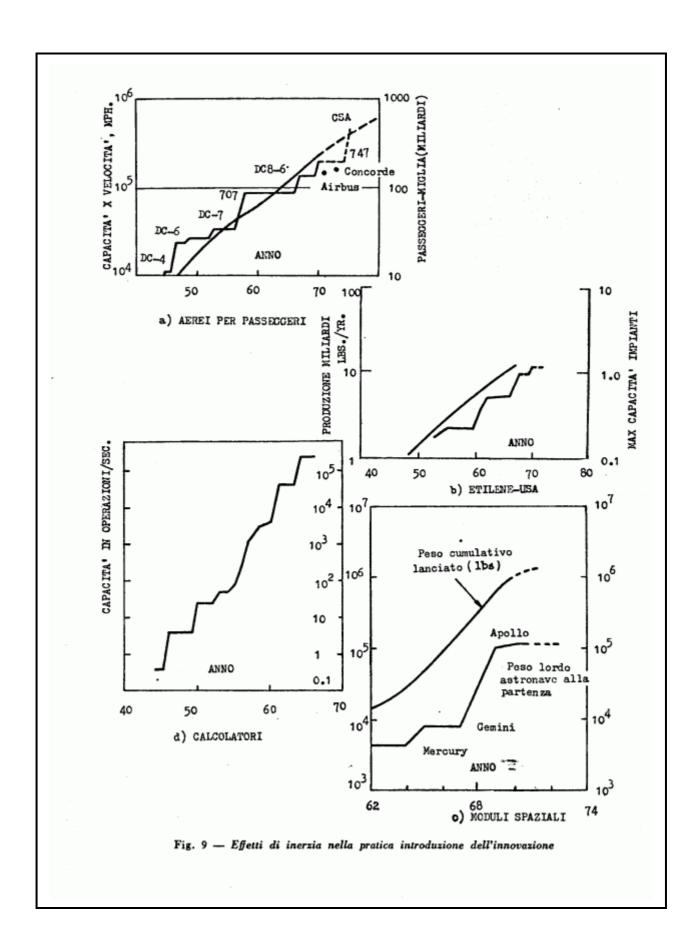
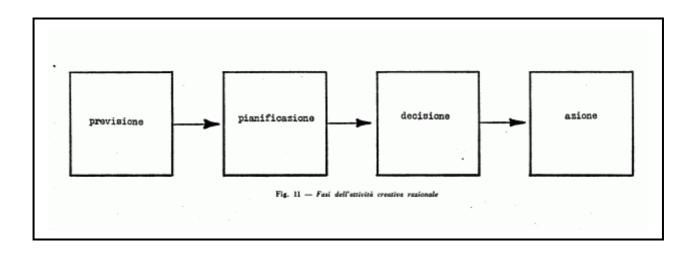




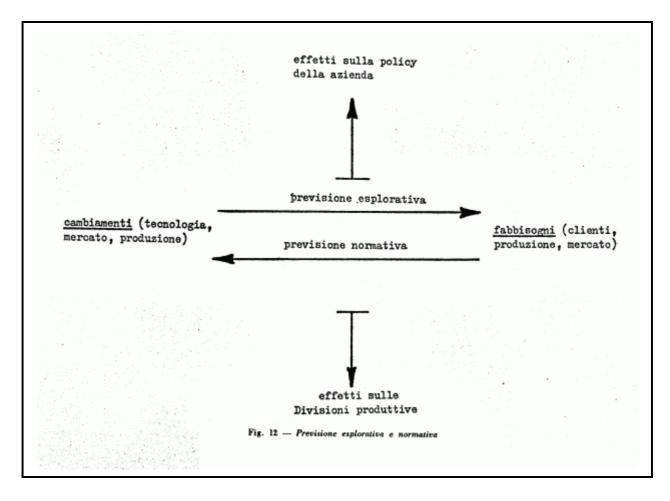
Fig. 5 — Effetti sinergetici dovuti all'interrelazione tra discipline e tecnologie diverse

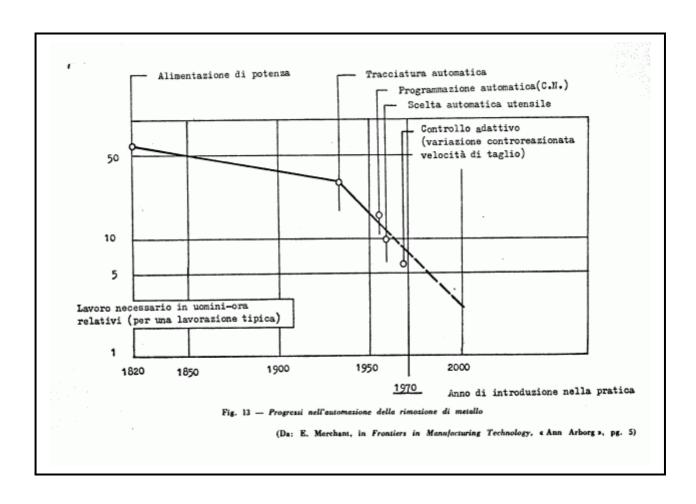
(Da: H. Kahn, A. J. Wiener, The Year 2000, pg. 69)

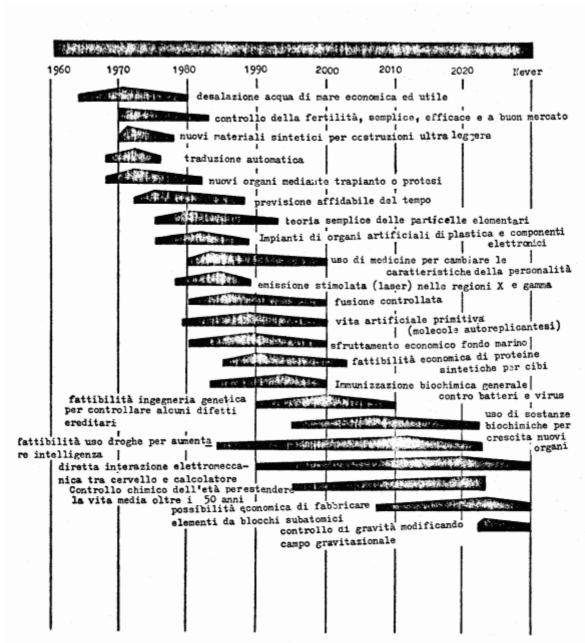
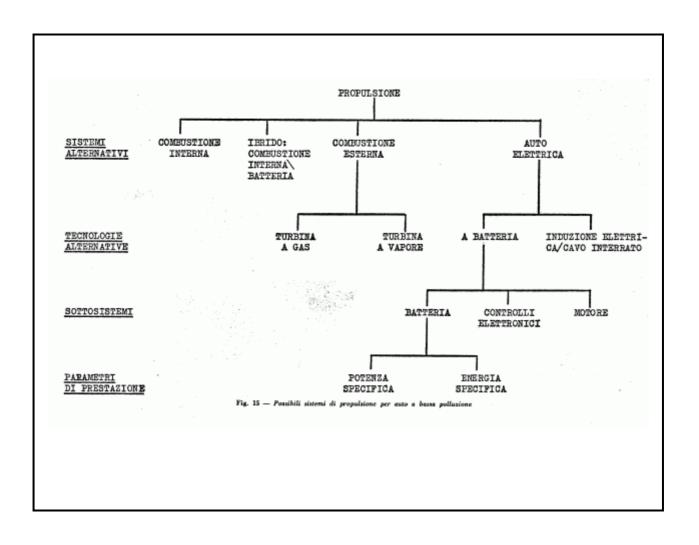
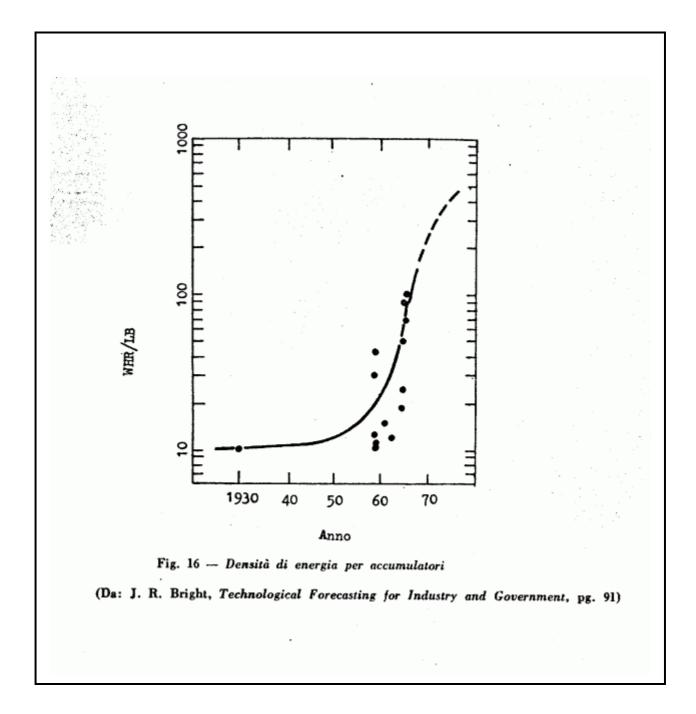
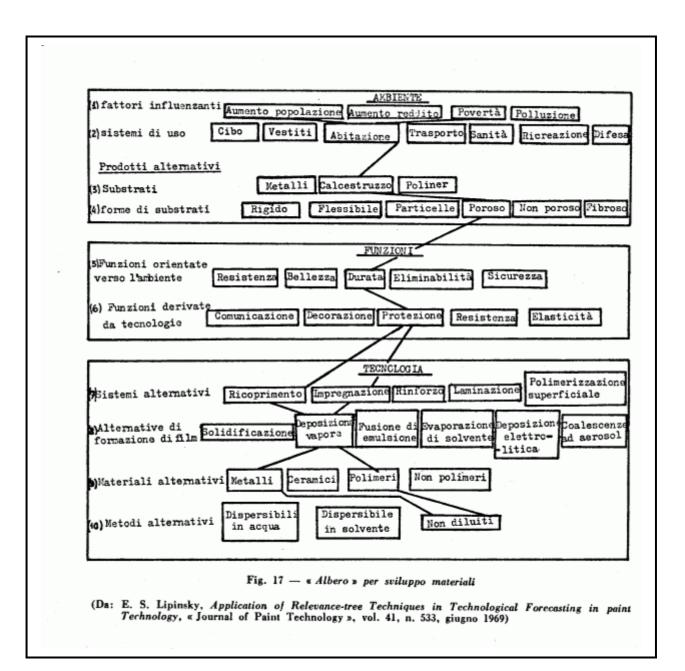
(Da: T.F. Me Neil, O.S. Clark, Cost Estimating and Contract Pricing, « Am. Elsevier Publ. 1960 », pg. 14)

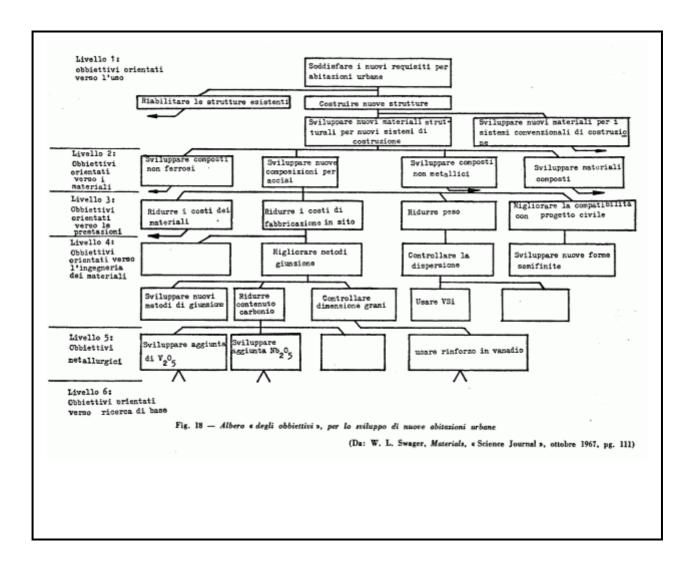



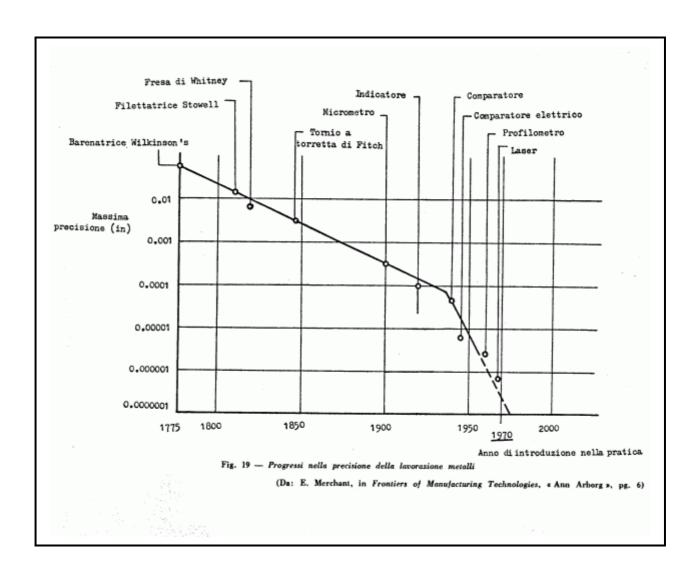


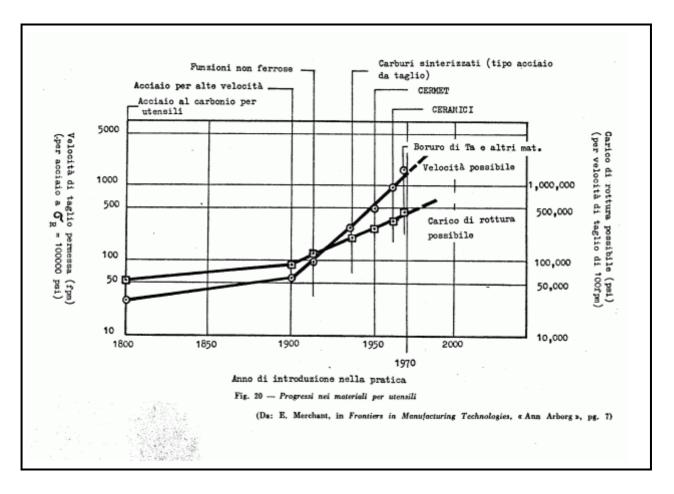

Fig. 8 — Effetto riduzione costi di produzione energia elettrica su processi produttivi

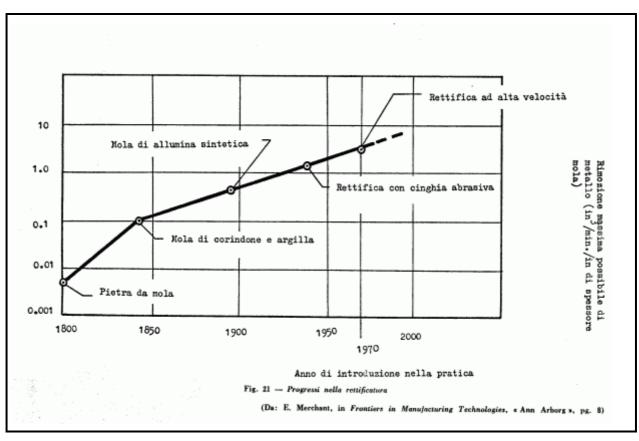

(Da: A. M. Weinberg, The Coming Age of Nuclear Energy, Sept. 28, 1967)

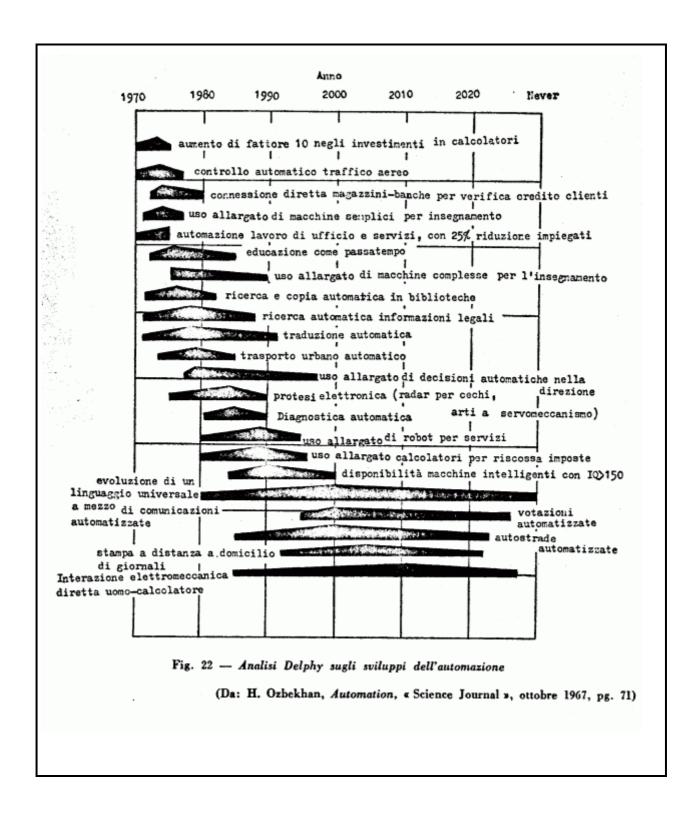





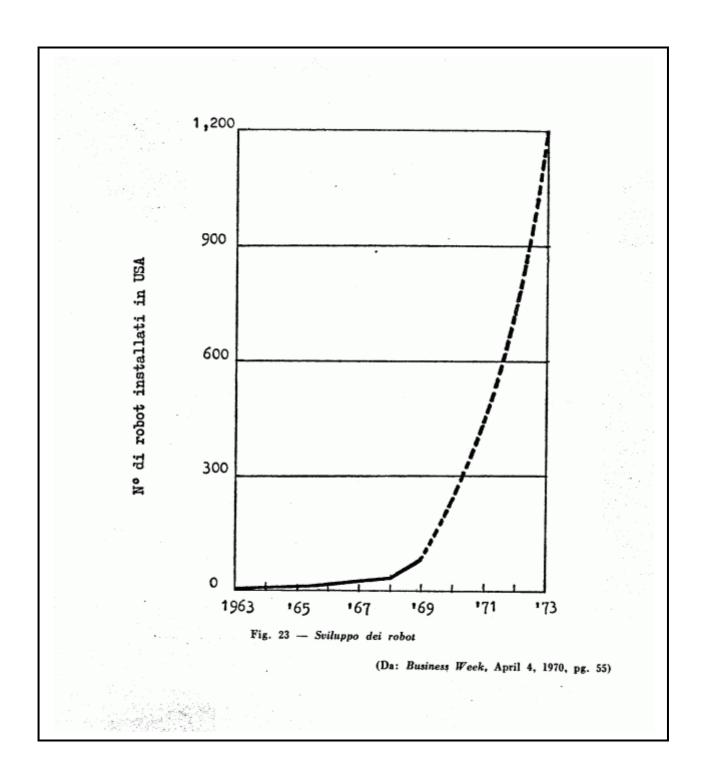

Fig. 14 - Previsione di un Panel Delphy sulle principali nuove applicazioni tecnologiche (1965)


(Da: O. Helmer, Science, « Science Journal », ottobre 1967, pg. 52)









Tab. 1 - SCARTO TEMPORALE - DALL'IDEA ORIGINALE ALL'INNOVAZIONE

INNOVAZIONE	Scarto temporale	Data approssimativa
Vulcanizzazione della gomma	2 a 3 anni	1840
Freni ad aria per treni	l a 2 anni	1868
Telefono	5 anni	1880
Alluminio elettrolitico	2 anni	1886
Raggi-X	Settimane	1896
Tungsteno duttile	3 anni	1910
Nylon	6 anni	1930
Grano ibrido	Varie decadi	1930
Radar	Alcuni anni	1935-39
Penicillina	12 anni	1940
Transistor	4-5 anni	1949-52
Stazione di potenza mobile ad uranio	16 anni	1954

⁽Da L. G. Cook, W. Adair Morrison, The Origins of innovations, Report n. 61 - GP - 214, June 1961, Gen. Electric)

Tab. 2 — INDUSTRIA ELETTROMECCANICA ED ELETTRONICA (Innovazione nelle caratteristiche tecniche dei prodotti)

CARATTERISTICHE TECNICHE	% di aumento annuo	Tempo di raddoppio
Tensione degli interruttori	4,5%	15 anni
Potenza unitaria delle turbine	7% 7%	10 anni 10 anni
Riduzione del costo unitario dei componenti per cal- colatori	50%	1,6 anni
Sensibilità dei sistemi radar	300%	0,5 anni

Tab. 3 — SPESE DI RICERCA E SVILUPPO PER SETTORI INDUSTRIALI - U.S.A. (percento)

	Aumento	Incremento	Aumento	Incompanie
SETTORI INDUSTRIALI	1953-65	annuo 1953-65	1965-80	Incremento annuo 1965-80
Acciaio	212	9,1	184	7,2
Metalli non ferrosi	325	11,8	176	7,0
Macchinari - Totale	242 185	9,9 8,4	196 175	7,5 7,0
— per industria meccanica	156 415	7,5 13,4	238 369	8,5 10,9
Apparecchiature per comunicazioni e comp.	2.484	28,4	163	6,7
Altri componenti elettrici	69	4,1	95	4,6
Aerei e missili	518	15,0	174	7,0
Auto	150	7,3	91	4,4
Apparecchiature per altri mezzi di trasporto . — ferrovie	163 74 271	7,7 4,4 10,6	174 168 238	7,0 6,8
Lavorazione metalli	179	8,2	186	8,5
Strumenti di misura scientifici e meccanici .	12	-1	145	7,3
Strumenti ottici, medici e altri	238	9,8	584	13,7
Prodotti chimici industriali	245 118	10,0 6,2	176 174	7,0 7,0
Medicinali	570	15,8	392	11,2
Altri prodotti chimici	178 164 110	8,2 7,8 5,9	94 125 81	4,5 5,6 4,0
Carta	162	7,7	145	6,2
Gomma	207	9,0	140	6,0
Vetro, cemento, argilla	198	8,8	259	8,9
Petrolio	192	8,6	255	8,8
Legnami e mobili	30	2,0	184	7,2
Cibi e bevande	178	8,2	166	6,7
Tessuti e confezioni	240	9,9	191	7,4
Altre industrie	190	8,5	217	8,0
Totale industrie	291	11,1	175	7,0

Tab. 4 — EFFETTI TECNOLOGIA SU AMBIENTE

PRODOTTI O PROCESSI	EFFETTI SU AMBIENTE
Detergenti	Crescita alghe
Fabbricazione acciaio con processo basico a ossigeno	Emissione particelle
Celle combustibile, MHD	Polluzione termica
Trasporti di massa	Occupazione aeree - Polluzione aerea
Molti processi chimici	Polluzione fiumi
Fabbricazione carta	Polluzione acqua e aria
Produzione alcali	Aumentata polluzione di mercurio
Insetticidi, erbicidi	Grandi cambiamenti ecologici

Tab. 5 — STADI NEL PROCESSO DI INNOVAZIONE TECNOLOGICA

Stadio	IDENTIFICATO DA
. 1	Suggerimenti scientifici, scoperte, riconoscimento di un bisogno od opportunità
2	Proposta di una teoria o progetto concettuale
3	Verifica di laboratorio della teoria o del progetto concettuale
4	Dimostrazione in laboratorio della possibilità di applicazione
5	Prova a piena scala
6	Introduzione commerciale o primo uso operativo
7	Larga adozione indicata da: notevoli profitti, uso comune, impatto significativo
8	Proliferazione

(Da: J. R. Bright, Technological Forecasting for Industry and Government, pg. 353)

Tab. 6 — ALCUNI RISULTATI DELPHY DI INTERESSE PER I PROCESSI PRODUTTIVI

EVENTO Previsione fatta nel 1965		no in cui vi è il robabilità che av	
	25% inferiore	50% medio	25% superiore
Esercizio di una unità centrale dati con ampio accesso per ricerca di informazione generale o specializzata	1971	1980	1991
Aumento per un fattore 10 negli investimenti in calcolatori usati per controllo automatico dei processi	1970	1973	1975
Automazione del lavoro di ufficio e dei servizi che riduca del 25 per cento la attuale forza di lavoro	1970	1975	1975
Uso allargato di tecniche decisionali automatiche per la pianificazione industriale e nazionale	1977	1979	1997
Evoluzione di un linguaggio universale attraverso le comunicazioni automatiche	1980	2000	mai
Fabbricazione di propellente e altri materiali sulla luna	1980	1990	2020
Previsione fatta nel 1966			
Le dimensioni delle fusioni e forgiature di preci- sione continueranno a crescere e diventeranno molto grandi rispetto ai prodotti attuali	_	1968	-
Vi sarà un uso sostanziale di materiali compositi impieganti « whisker » nelle turbine a gas e nei motori a getto	_'	1970	2 <u>-</u> ,
Verranno usate matrici « al calor rosso » per for- giati larghi, a parete sottile e liberi da «difetti»	-	1971	

Tab. 7 — FUNZIONI E CAPACITA' DI UN LABORATORIO DI RICERCA SUI PROCESSI PRODUTTIVI MECCANICI

- Capacità interdisciplinari: progettazione, tecnologie di produzione diverse, analisi dei sistemi.
- Studio effetti nuove tecnologie su produzioni presenti e future.
- Studio interazione tra disegno prodotto e metodi di produzione.
- Esercizio linee di produzione prototipo.
- Prova apparecchiature di produzioni speciali.

Esempi:

- Westinghouse Headquarter Manufacturing Laboratory
- Western Electric Engineering Laboratory.

Tab. 8 — STRUTTURA GERARCHICA NEL PROCESSO PRODUTTIVO COME SISTEMA

1º livello) Sistema blogale:

Uso integrato di: - uomini

— mezzi

- materiali

2º livello) Sistemi di integrazione: - automazione

- processi continui

3º livello) Tecnologie funzionali e di supporto:

Metodi per operazioni di base su materiali e parti:

- dare forma: - pressatura

— taglio — fusione

- formatura (materia plastica)

– mettere assieme: – saldatura

- giunzioni

- chiodatura (fasteners)

- mescolare

— fare leghe — separazione

- separazione per via chimica
- » » meccanica

» minerali

- degasatura

- tecnologie supporto: - prove

-- controllo qualità

imballaggio

--- trasporto materiale

- funzioni di supporto: - acquisti

Tab. 9 — PRINCIPALI LINEE DI INNOVAZIONE NEL PROCESSO PRODUTTIVO MECCANICO

a) Sistema globale:

 cambiamenti nell'organizzazione della produzione principalmente per il ricorso all'analisi dei sistemi con uso esteso dei calcolatori.

b) Sistemi di integrazione:

- maggior introduzione dell'automazione;
- uso dei calcolatori che « imparano » nei processi produttivi già altamente automatici;
- tendenza all'integrazione nel processo produttivo delle funzioni di supporto: manutenzione, prove, imballaggio.

c) Tecnologie funzionali:

- sviluppo apparecchiature e metodi compatibili con le esigenze dell'automazione:
 - 1) lavorazione metalli che producono parti uniformi e senza distorsioni;
 - 2) parti monolitiche fuse;
 - sottogruppi modulari;
- variazioni progetto per ottenere prodotti flessibili a richiesta mercato, ma con alta standardizzazione componenti per più elevata qualità.

 ${\it Tab.~10-ALCUNE~TECNOLOGIE~FUNZIONALI~CON~PROBABILITA'}$ DI SVILUPPO SUPERIORE ALLA MEDIA

	1				
	TECNOLOGIA	APPLICAZIONI TIPICHE			
	Ultra alta pressione	- formatura, forgiatura, estrusione metalli - rivestimento metalli - giunzioni molecolari e di diffusione - sinterizzazione di polvere			
	Plasma	taglio veloce metalli riduzione minerali			
SORGENTI ENERGIA	Fasci elettronici Lasers	saldatura senza distorsioni; microsaldature lavorazione di precisione di metalli			
	Scariche elettriche	— lavorazione metalli di precisione e senza ten- sioni residue — formatura elettroidraulica			
	Microonde	— preservazione cibi — rilevamento nei controlli di qualità			
	Infrarosso	— rilevamenti nei controlli di qualità			
	Radiazioni nucleari	— essicamento rapido tessuti senza riscaldamento			
	Ultrasuoni	— saldature piccole parti			
	Elettrostatica	stampa a secco e su superfici irregolari ausilio spruzzatura vernici separazione materiali diversamente conduttori			
	Attaceo chimico	- rimozione metallo senza tensione			
AMBIENTI	Vuoto	— controllo composizione e struttura nella fusione metalli — controlol della qualità nella fabbricazione cir- cuiti integrati			
SPECIALI	Atmosfere inerti e speciali	controllo qualità in sinterizzazione e saldatura trattamento resine anaerobiche			
	Freddo	— miglioramento proprietà metalli con lavorazione a bassa temperatura			
	Calore	— aumento velocità lavorazione metalli			
	Microincapsulamento	rilascio controllato di elementi reattivi di ade- sivi, inchiostri, ecc.			
FORMA	Fabbricazione polveri	— fabbricazione di parti da leghe o miscele dif- ficili			
DEI MATERIALI	Pastigliatura	- automazione di parti da leghe o miscele difficili			
	Fluidizzazione corpuscoli	— verniciatura			
	Compositi a fibre	— produzione strutture a caratteristiche mecca- niche orientate			
		mene vilemate			

Tab. 11 - PREVISIONE SULLA TENSIONE DI SNERVAMENTO DI ALCUNI METALLI

METALLO	1945	1950	1955	1960	1965	1970	1975	-
Acciaio Titanio Magnesio Alluminio	150 60 25 70	165 100 30 70	180 150 35 70	225 175 45 75	275 200 60 80	335 220 75 90	415 240 100	× 1000 psi × 1000 psi × 1000 psi × 1000 psi

(Da: J. R. Bright, Technological Forecasting for Industry and Government, pg. 408)

Tab. 12 — PREVISIONI SULLA RESISTENZA A TEMPERATURA DI ADESIVI PER METALLI

ANNO					Servizio breve (0,1 ora)	Servizio di lunga durate (1000 ore)				
1961 (1)			٠.			, ,		1100°F	500°F
1965 (1)								1500°F	700°F
1970 ((2)	٠,.							1700°F	1200°F
1975 ((3)				•				2500°F	2000°F
1980 ((3)								3000°F	2500°F

(Da: J. R. Bright, Technological Forecasting for Industry and Government, pg. 407)

Tab. 13 - ANALISI DELPHY SULLO SVILUPPO DEI PRODOTTI CHIMICI -MATERIALI PRODOTTI DA SORGENTI E TECNOLOGIE NUOVE (Inghilterra)

	ANNO PRODUZIONE IN 1000 TONN.						
Materiali organici da sorgenti nuove (diverse da petrolio)		0	1-4	5-9	10-19	20-49	50-99
	1980	8 *	0	4	3	0	0
-	1985	7	1	0	4	0	2
	1990	- 5	0	1	1	2	2
2) Prodotti inorganici da tecno-	1980	3	5	1	4	1	0
logie nuove	1985	2	2	2	3	3	2
	1990	1	2	1	1	4	3

^{*} Nº di risposte.

⁽¹⁾ Adesivi di tipo organico. (2) Adesivi di tipo inorganico. (3) Adesivi di tipo ceramico.

SORGENTI PIU' PROBABILI		Nº di risposte	Probabilità media	Anno medio di commer- cializzazione
l) Da cellulosa, materia vegetale		11	5	1982
Da rifiuti organici, scarichi			4	1981
Da gas naturale			6	1975
Dal carbone		5	3	1984
Da sorgenti marine			4	1982
Dal trattamento dei polimeri nei rifiuti .		1	7	1990
Biosintesi			3	1990
CO2		1	7	1985
Zucchero		. 1	7	1985
P) Fibre inorganiche, plastica, polimeri		14	8	1975
Chimica silicati, cementi, ceramici		10	6	1980
Esplorazione aree remote (sottomarine) .		3	5	1978
Leghe metalliche termoplastiche		1	. 9	1975
Nuove tecniche, fissazione N	٠.	1	7	1980
Luna come sorgente minerali		1	1	2000

(Da: Parker, Delphy-Type Exercise on U.K. Chemical Industry, pg. 7)

Tab. 14 — TECNOLOGIE SALDATURE

Saldatura a fusione:		Tendenze
1) a gas 2) a resistenza elettrica: 3) a fascio elettronico 4) a laser	 cc, ac alta frequenza elettrodo TIG (tungsteno) MIG (metallo) arco sommerso elettroscoria arco al plasma 	stazion. stazion. aumento diminuz. stazion. forte aumento aumento aumento stazion. forte aumento
Saldatura a stato solido:		
1) diffusione 2) esplosiva 3) frizione 4) ultrasonica Saldatura per alta pressione:		incerto incerto aumento aumento
 giunzione di metalli e leghe giunzione ad impatto di met rando resistenza alla corrosion ricoprimento di superfici con 	alli rari (Ti, Ta) miglio- ne e duttilità	aumento aumento
ne ed urto 4) ricoprimento di metalli refrati 5) ricoprimento a molti strati in fogli)	tari 1 un sol colpo (fino a 100	aumento aumento

Tab. 15 — ESEMPI TIPICI DI PARTI REALIZZATE CON METALLURGIA DELLE POLVERI

Applicazioni commerciali:

- ingranaggi di trasmissione per auto, cuscinetti, giunti di sospensioni;

- parti per elettrodomestici;

- ingranaggi per macchine da scrivere;

- parti per rasoi elettrici;

- blocchi compressori per condizionatori aria;

- cineprese e proiettori;

— parti di rivoltelle;

- sfere per penne a sfera;

- controbilanceri in orologi a carica automatica.

Applicazioni aerospaziali:

- Berillio: parti di giroscopi, antenne Telstar, schemi termici;

- Tungsteno: bocche di scarica razzi;

Molibdeno: rettificatori semiconduttori, spigoli di impatto per aerei supersonici;

- Tantalio: condensatori.

Tab. 16 — SETTORI INDUSTRIALI IN CUI TROVA APPLICAZIONI LA MICRO-BIOLOGIA

- Industria chimica
- Rifiuti e scarichi
- Conservazione alimenti
- Agricoltura
- Farmaceutica
- Produttori di enzimi
- Industria del petrolio
- Industria mineraria
- --- Industria del legno
- Attività aerospaziali
- Apparecchiatura per processi chimici

Prof. SCHIPPA — Ringrazio il Prof. Businaro che ci ha permesso di avere una chiara visione degli enormi problemi che sorgono nel campo della previsione tecnologica. E' evidente che gli argomenti da lui trattati dovranno essere opportunamente introdotti nei programmi di studio della S.M.T.

Data l'ora, riprenderemo i nostri lavori nel pomeriggio, all'Albergo Montecagno.

DISCUSSIONE POMERIDIANA

Nel pomeriggio, all'Albergo Montecagno, prendendo lo spunto dalle relazioni del mattino, si sviluppa un ampio e approfondito dibattito al quale partecipano, oltre al Prof. Peroni e al Prof. Businaro, i Proff. Danese e Schippa, il Dott. Reiter, l'Ing. Giacobbe, l'Ing. Rosa, l'Ing. Tricoli, il Prof. Dinelli.

Vengono proposte modifiche al progetto dell'Ordine degli studi della S.M.T. che