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Solution of the Great Theorem of Fermat
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SUMMARY: The June 1989 "Le Scienze" magazine reported a concise confirmation of the official publication "Riflessioni sull'Ultimo Teorema di Fermat" (Considerations on the Last Fermat's Theorem) 1988, in the Received Books Appendix at page 108. The work was of a certain Giovanni Imbalzano, who had been involved in it since 1969. In this work (a few pages) I use the most efficient method (the theory of the cyclic groups). The subject is interesting above all for a physicist, since Pierre Fermat may be considered such. Therefore I submit to your vision a copy of such a work, with the following PREFACE.

RIASSUNTO: La rivista "Le Scienze" del Giugno 1989 riportava (nella "Appendice dei "Libri Ricevuti", a pagina 108) una laconica conferma della pubblicazione ufficiale "Riflessioni sull'Ultimo Teorema di Fermat" del 1988, opera di un certo Imbalzano Giovanni, che si era occupato di tale problema fin dal 1969. Nel mio lavoro (di non molte pagine!) uso il metodo più efficace (teoria dei gruppi ciclici). 
L'argomento è interessante soprattutto per un fisico, quale anche consideriamo il nostro Pierre Fermat, quindi vi sottopongo questo mio lavoro, con la seguente PREFAZIONE.

To his time, I have verified the analogies of the method from me applied the problem of Fermat with the algebraic resolution of the regular polygons with n sides. As seems, Gauss has certainly shown the possibility of the construction for all the first numbers that correspond to n=2m+1, but he has not furnished the final formulas. By using the reduction of the "cyclical" group, we could determine the apothem of the epta-decagono (n=17) in original manner: 

cos(16π/17)={v-[-v2+8-2/v]}/4, posto 

v=u-[u2+1], u=(-1+17)/4; the other determinations of the signs (±) of the square roots furnish others 
cos(2kπ/n). Is remarkable the fact, in the own algebraic field, 

vv*=-1, uu*=-1, and this generate a "Euclidean ring"
Z(5+4u)@R(17). But the cyclical group doesn't furnish everywhere a Euclidean ring; still, this happens for n=5, where cos(2kπ/5)=(-1±5)/4, but never for the equation 
exp((2kπi/15)3n)=1: in fact, R(5) is incompatible with 


R(3). In the reading of this work, you observe the congruencies α3n=1 mod.(µ), similar to those of Gauss and a-priori reducible, but to resolve in "integer field", without possibility of introducing n-root of the unity exp(2πi/n) and with precise conditions of symmetry:


α(z)-n+1+α(x)n=0, α(z)n+1+α(x)-n=0 mod.(µ) 


...we will get a complete confirmation of the validity and also of the oneness of the applied method for the demonstration.

Epta-decagon of Gauss
Historical introduction: the cyclical equations

Today we know well like for the solution of an equation is not necessary to know a detailed method, but often it is enough to know the symmetries, or transformations, that furnish each "invariant" of the equation. An example could be the theorem of Cauchy for the differential equations, or the criterion of Ruffini for the algebraic equations on the integers: practice that is enough for reaching the same solutions gradually, in the established order. This is also more valid when is required, or not, the existence of the possible solutions. Generally, Galois (1832) demonstrates that the totality of the exchanges of the solutions (auto-morphing) furnishes unique essential information on the ownerships and solution of an algebraic equation. Particularly, Gauss furnishes a unique criterion for the division of a circumference in equal parts (cyclical theory), with the exclusive use of extractions of square roots (or equivalent constructions to the use of ruler and compass)[3,4].

If n is a prime number and z any imaginary root of the unity of n-order, this satisfies to the equation 


(zn-1)/(z-1)=jΣ0n-1(zj)=0; in way of the all equivalent, the equation is satisfied from (n-1) roots, such that each of them represents a fixed power with integer-exponent, relative to each of the others. The expression Φ(n)=n-1 represents the number of primes with n but inferior of n. 

Analogously, per N=2m0n1m1n2m2…njmj…nLmL also not first, the equation that furnishes all the possible imaginary roots, that give all the other powers with integer exponents, is of degree 


Φ(N)=2m0-1(n1-1)n1m1-1(n2-1)n2m2-1…(nj-1)njmj-1…(nL-1)nLmL-1 (Euler formula). Exactly, such number represents the quantity of numbers inferior of N but primes with him. 

The "cyclical solutions" they satisfy surely to the cyclical group therefore jΣ0n-1(zj)=0 and the equation could be decomposed according to the factors of N, like for instance for N=6
{Φ(6)=1·2=2} in z5+z4+z3+z2+z+1= 


=(z3+1)(z2+z+1)=(z+1)[(z2+1)2-z2]=(z+1)(z4+z2+1)=0, therefore the principal roots bring again surely to the simple equation
z2±z+1=0. But, if we claim the construction of the roots of N -order of the unity with the exclusive use of subsequent extractions of square roots, an important additional condition intervenes: necessarily Φ(N) is a power of the 2, and the prime factors of N, apart from 2, they are of the prime numbers of Fermat, of the type n=2f+1, and then it is necessary at least f=2g. Fermat didn't know if other possibilities exists for g>4; big mathematical, Euler has verified who 232+1 n is not a first number, but he not demonstrate the existence or less of other hypothetical "prime numbers" of Fermat. In what follows, we will resolve the case not banal n=24+1=17, relative to the epta-decagon regular, inside to the circumference. This is the form of the base of the erect statue in honour of Gauss from the citizens of Gottinga, where he is dead (1855).

Identities 


If z=2cos()=ei+e-i, z2=2cos(2)=4cos2()-2, is then 

z2=z2-2, z=±[z2+2]. With α=ei, the identity 

1+z2=(α+1/α)2-1=z2-1 corresponds to the "notable product" 


α2+1/α2+1=(α-1+1/α)(α+1+1/α). However, for iteration is: 


z4=z22-2=(z2-2)2-2, z8=[(z2-2)2-2]2-2, 

z=z16=z82-2=(z42-2)2-2. Here, I have represented the transformations of a cyclical group T, therefore 

zz2=z2-2=TzT2zT3zT4z=z, accordingly T4=1=T0. The group is constituted of 3 separate elements, beyond to the unity; but, like for each cyclical group, at least one of his elements (certain different from 1) generates the whole group. Particularly, since T2z=z4, it is also T-2z=T2z4=z, in reason of the existence of the inverse, apiece of the elements. 
 Reduction of the epta-decagon 

For obtaining the trigonometric values of cos(2kπ/17) with 


0<k<17 is necessary to resolve the equation

(α17-1)/(α-1)=kΣ016(αk)=0, where α=exp(2kπi/17). With the definition
z=α+1/α, we get: 


z8+z7-7z6-6z5+15z4+10z3-10z2-4z+1=0.


This equation, superior at the 4° degree, in base to the theory of Gauss is solvable algebraically if and only if exists a group of transformations, able of reducing the degree (decomposing in factors). But for example with the transformation zz4=(z2-2)2-2, the said equation increases of degree; in effects, solutions with double sign are added then like z=±[z2+2], relative to the roots of the unity of the order 
(2·17)=(34). However, it not is necessary to resolve that equation, but we could base us directly on the transformations of group, with them inverse:

z4=(z2-2)2-2, z=(z42-2)2-2. From where, for sum and difference, it’s (z4±z)=(z4±z44)-4(z2±z42)+2(1±1). Considering 


z4z, (with separate roots) it’s possible to simplify the equation "difference" for z4-z0, and from this, in "sum and product" s=z4+z, p=z4z, will be gotten the system: 


s4-4s2-4ps2–s+2p2+8p+4=0, s3-2ps-4s+1=0. 


With the substitution p=(s3-4s+1)/2s, respect to (s) one obtain the pseudo-symmetrical equation: s6-8s4+4s3+8s2-1, or: 


(s-1/s)3-5(s-1/s)+4=0. Finally, we resolve respect to an of the two possible determinations of: u=(s-1/s)/2 {u1/2 because of the reality of } and we get the equation "resultant" 


(u–1/2)(u2+u/2-1)=0, from which: u=(-1±17)/4, s=u±[u2+1]. 


We conclude: for the trigonometric function of the angles to the centre, for 0<<π, we get {relatively to the choice of 3 signs ±} the possible determinations 23=8: 

cos()=z/2={s±[s2-4p]}/4={s±[8-2/s-s2]}/4, where 


s={-1+17±[2(17-17)]}/4, where we must also consider the double possibility of the sign: +17-17. 
Observation 

The quantities (s, u), and in a more complicated way also 


(p, z), they satisfy, each for own account, to an algebraic field, with “forms -unity": ss*={u+[u2+1]}{u-[u2+1]}=-1, 

uu*=[(-1+17)/4][(-1-17)/4]=-1.

Better of these, in the quadratic -field R(17) is possible to define "fundamental unities" that they generate a Euclidean -ring (for the which it is possible to introduce ownerships on the rests, analogous to those of the Z -ring of the relative integers) Z(4±17)@R(17), of "norm -unity" negative: 


(4+17)(4-17)=-1. We ask we now if it is not possible to build "roots" of the unity with the intervention of an unique square root of a negative number N, what happens for the imaginary known generators (like for instance i=(-1), or 

{ε, ε*}=(-1±-3)/2). After we have ascertained that the cyclical equation 2m-1=1 mod.(eik/17) contains multiple roots, it's needs in this case that the equation is to the more than fourth degree, and to the purpose is well to remember the formula of Euler: Φ(N)=2m-14, m3. We will owe, however, to exclude N=5 (from the semi-side of the regular polygon in the surface of Argand 

ir=i(-1+5)/4=isin(/5) gives the "unities" 


u=[1-rr]±[-r]) and also N=8 (analogously, 


ir=i2/2=isin(/4) gives u=(2±-2)/2) with the presence of more of a square root, in both the cases. To less of the reduction to the relative integers Z{1}, we are reduced finally only to two possible Euclidean -rings in the complex field: Z{i} or Z{(-1±-3)/2}. 


In my “Riflessioni sull'Ultimo Teorema di Fermat”[1] I have sought the possibility of build the "solutions" of the equation xn+yn+zn=0 (for an prime exponent n>3), or the demonstration of the non-existence of solutions in (quadratic) Euclidean rings, like above. Then I have discovered an “congruent” equation of the type α2n+αn+1=0 mod.(z2-xy), where 

α=(x/y). The solutions {α} they satisfy evidently to a cyclical group, in partnership to the congruence: 


α3n-1=0 mod.(z2-xy). The principal demonstration consists own in to research on the generators of this group; however, it needs to superimpose an additional condition, directly from the same equation xn+yn+zn=0, therefore, symmetrically in the exchanges on {x, y, z}: 

z2-xy@z2n-(yx)n=x2n-(yz)n=y2n-(zx)n=x2n+(yx)n+y2n. In base to the same theory of the groups, in a first phase the result is what it is not feasible no other type of demonstration general, or she surely concerns the reduction of the group of generators {α} to a under-group, such that simply: 

α2+α+1=0 mod.(z2-xy). Besides all, the non-existence of not-banal solutions for the equation (in natural integers) of Fermat, equivalent to xn+yn=(-z)n, brings again to the same induced condition on the generators of the cyclical complete aforesaid group. We reassume such Reflections shortly: to the equation α3n-1=0 mod.µ@(z2-xy) they correspond Φ(3n)=2(n-1) generators {α} correspondents to the degree of the equation 


mod.µ (α2n+αn+1)/(α2+α+1)=0. 


Particularly, the equation α2n+αn+1=0 mod.(µ) should not contain the generators of the relative under-group that is associated to the equation αn-1=(α3n-1)/(α2n+αn+1)=0 mod.(µ), in contrast however with the identity that originates from the additional hypothesis: xn+yn+zn=0, and involve (cyclically) 


yn(α2n+αn+1)=x2n+(yx)n+yn=z2n-(yx)n. Exactly the last expression contains the factors in partnership with µ in the congruence that regards (α3n-1), like I prove in the my first work and in the followings, and how we may know instinctively from the fact that the congruence of the type 


(z2/xy)n-1=0 mod.(µ) really involves the whole under-cycle of n -order. The conclusion: for the reason that they could not be part, of the generators of the whole group, also those of the under-group of n -order in partnership with 

(αn-1)/(α-1)=0 (µ), then we are reduced to the simple equation α2+α+1=0 mod.(µ) with consequent reduction to the absurd (by excepting the banal cases) of the equation of departure: 
xn+yn=(-z)n.
The theorem of Fermat

SUMMARY: The author proposes the "II Fermat's Theorem" for the Z -ring of the integers, as already is true for every Euclidean -ring in a quadratic field.[1]

RIASSUNTO: L'autore propone la dimostrazione del “II Teorema di Fermat” per l'anello degli interi Z (come già prevista per qualsiasi anello euclideo nel campo quadratico).[1] 
General INTRODUCTION

U.F. -Rings 

In symbols, it am "A" a ring with Unique decomposition in Factors (UF -ring), that it is an under-whole {A@R} of a R -field of rationality; with (x, y, z) the Maximum Common Divisor between the elements {x, y, z}@A, with (x; y; z) their minimum common multiple. Particularly, the ring of the natural integers (also negatives) is suitable with Z or Z(1). For definition (for each choice of whole d, q, r) is

{d, q, r}@A: r+dq=r mod.(d). 


With equivalent meaning, we will also write:

r+dq=r (d). The ring of the "integer" complexes of Gauss it is symbolized with Z(i), and it is a ring with two elements of base {or of 2.nd order} because c@Z(i): 

c=a+ib with {a, b}@Z. An other ring with double base is the under-whole of the rational field R(-3): Z(ε)=a+εb, where 

ε=(-1+-3)/2, ε*=(-1--3)/2. It is εε*=1 and in a similar manner ii*=i(-i)=1, therefore the elements of base of the field, in Z(ε)@R(-3) or in Z(i)@R(-1), they am also unit-value; for other fields this could be false. The module 


|c|=|cc*|\|c|=0 represents an evaluation V(c), as follows. 


Euclidean –Rings 


These are Æ -rings that satisfy to the following postulations.

[= for each] a@Æ:  [=exists] V(a) \ [=so that] 0=V(a)@Z, V(a)=0 if and only if a=0; 


{a, b}@Æ: V(ab)=V(a)V(b); 

{d0, c}@Æ: \ c=qd+r, with V(r)<V(d).


Between two elements {p, q}@Æ the notation “p@q” is equivalent to
q=0 mod.(p) and it result: V(p)@V(q); not always, however, it is worth the vice versa. As follows, with (p, q) we symbolizes the product of the factors in common between p and q, from to consider with the least multiplicity and to less of any unitary -factor, therefore (V (p), V (q)) represents the Maximum Common Divisor between V(p) and V(q): 
if (p, q)=1, then p and q don't possess factors in common, different from the unities. For any congruence in the Z -ring of the relative integers, it's worth the following ownership, known like First Fermat’s Theorem:

prime µ@Z, qp=q mod.(µ) \ (q, µ)=1 qp-1=1 (µ).

Notable formulas 


On three data elements{ x y z} we define: Sh=xh+yh+zh, particularly S1=x+y+z=S; Fzh=xhyhxh+y, Fz1=Fz cyclically; 

Izh=z2h-xhyh, Ixh-Iyh=(yh-xh)Sh=Fyh-Fxh, G=xhyh+yhzh+zhxh, 
G=G1=xy+yz+zx=(S2-S2)/2, always cyclically.

Headword for the symmetric sum (G)

« They are definite the "integers" {x, y, z}@Z, not all unities, with (x, y, z)=1. If the sum S=x+y+z is such that 

xyzS0, and Sn=xn+yn+zn=0 for an exponent prime natural 

n>3, then each prime factor µ@G=xy+yz+zx is contained also in S (µ@S), or S=0 mod.(µ), in base to the fact that is always: G0.

» We premise this: G contains a factor not -unitary at least, otherwise the thesis would be banally true. The demonstration of the last affirmation is originated from 


G=0z(x+y)=-xy, so that 
xy=0 (z) and cyclically, therefore every factor in one of they three integer (like x) it would be contained in the others (yz) in contrast with the primitiveness, or each {x, y, z} it would be an unity, against the initial hypothesis. And it's not simply G0, but also 

(G, xyz)=1; if for instance v=(G, z)+1, then 


z(x+y)=-xy=0 (v) and again (yx, z)1 against the hypothesis. 
We premise to what follows, for the factors "even" of G (µ@2), that we reach the thesis from the simple consideration that Sn=0 implicates xyz=0 mod.(2) and, because of the primitiveness (x, y, z)=1: (G, 2)=1. Therefore, it stays from to prove him only for factors “odd” like µ@G. Therefore, with 


r=y/z (or cyclically in z/x, x/y), we needs to suppose 


1+r+r20 (µ), otherwise also Fx=z2+zy+y2=z(1+r+r2)=0 (µ)and from this: 


(y+z)S=(y+z)S-Fx=(y+z)S-(y+z)2+zy=x(y+z)+zy=G=0 (µ). If for absurd S0 (µ) we deduces y+z=0=(1+r)z (µ) and, as we remember 


(G, xyz)=1: r=-1 (µ), is directly 1+r+r2=10 (µ) what confirmation what we affirmed above. 


Now we consider the behaviour of the quantities 

{r=rx, ry, rz}={y/z, z/x, x/y}, reducible to the rests mod(G): x/zy/z+x/z+y/z=G/z2=0 (G); (rx+1)ry-1+rx=0 (G)
 (1) 
from which, beyond rx=r mod.(µ@G), ry=-(r+1)/r (µ), it’s, for 


rz=(rxry)-1=-r/(r+1)/r (µ): rz=-1/(r+1) (µ).


 (2)
It is also Sn=xn+yn+zn=zn(ry-n+rxn+1)=0 (G), 

Sn=[(-r)n+(1+r)nrn+(1+r)n]/[r(r+1)]n=0 (µ) and, always if for absurdity S01+r+r2 (µ): (-r)n(1+r)n(rn+1)=0 (µ@G). 

This congruence -equation in (r) is satisfied from each of the quantities {rx, ry, rz}, and they are worth for these ownership notable of symmetry; for first the triadic symmetry (K) definite from (K)r=-(1+r-1), (K2)r=-1/(1+r)=r-1/[(K)r], with (K3)r=r; by the symmetry in {r, r-1} the said equation satisfies also to the transformation for inversion (R): 


(R)r=r-1, (R2)r=r. 
The operators {K, R} they give birth to the dihedral group {D3}, a-priori not commutative to less of his under-groups, with: ((R)K)r=-r/(1+r), ((K)R)r=-(1+r). But, in base to the hypotheses, this group is reduced to a certain (under) group, cyclical and therefore commutative, that is generated from the congruence r3n=1 (µ), like we will show. To the purpose, we consider the quantities 


{Jx Jy Jz}={x2n/(yz)n, y2n/(zx)n, z2n/(xy)n}= 


={ry-nrzn, rz-nrxn, rx-nryn} satisfactory to the identity 


JxJyJz=1 and calculate their symmetrical expressions: 


Jx+Jy+Jz=3; 


JxJy+JyJz+JzJx=1/Jz+1/Jx+1/Jy=[(1+r)3n-r3n-1]/[rn(1+r)n] (µ). The first represents an identity (based on the fundamental hypothesis Sn=0): 


(x2/yz)n+(y2/zx)n+(z2/xy)n=S3n/(xyz)n= 


=[Sn3-3(xn+yn)(yn+zn)(zn+xn)]/(xyz)n therefore 

Jx+Jy+Jz=-3(xn+yn)/zn=(yn+zn)/xn=(zn+xn)/yn=3.


The second expression, we tell Γ(r), is deduced for direct substitution of the {ri/rj}. It could be verified that this expression coincides with Γ=[(1+r)3n-r3n-1]/[rn(1+r)n]= 

=[r3n-(r3n+1)(1+rn)3]/[r2n(1+rn)2] (µ).

In general, Γ satisfies to the ownerships of symmetry 


Γ(Kr)=Γ=Γ(Rr) mod.(µ): enough to verify the his invariance for rr-1-(1+r). The quantity 


{Jx+Jy+Jz, Γ, JxJyJz} they are therefore invariant in the group {D3} and the associated equation 

J3-3J2+ΓJ-1=[(1+rn)(r+1)n-rn]/(1+r)n=0 (µ) she same results invariant, particularly if is subjected to the inversion Rr=r-1 (µ); this transformation in each case is defined from the group of corresponding congruence: 

r-1=rp-2 mod.(µ@p) { from the I Fermat’s Theorem}.[3,4] In base to the definitions, for which for instance 


RJx=R(ry-1rz)=ryrz-1=Jx-1 (r), and without any loss of generality, it's necessarily: 

(J3-3J2-1)/J=Γ=Γ(Rr)=(J-3-3J-2-1)/J-1=(1-3J-J3)/J2 (G), 

J4-3J3-J-1+3J+J3=0=J4-2J3+2J-1= 


=(J2-1)(J2+1-2J)=(J+1)(J-1)3 (G). 

Since Jx+Jy+Jz=3 (µ) we can of the all exclude the possibility J=-1 (µ) and therefore Jx=Jy=Jz=1 mod.(µ@G); but this implicates rxnry-n=1 (µ) cyclically, and finally: 

rxn=ryn=rzn (µ), rx3n=(rxryrz)n=1 (µ). 


Therefore, each operator {r} represents an element of the cyclical group, generated from the congruence: r3n=1 (µ), where the order 3n of the group could be decomposed according to the prime numbers 3, n, relative to two types of primitive under-cycles. Now, not as soon as two of the {r} they are in the same primitive under-cycle of order (3) or (n) also the third is such, for instance rz=(rxry)-1, and in base to the ownerships of the (under) cyclical group one could set Kr=rk (µ),for an integer k@Z+ like k<3n (<minor of the “order of the cycle”). In contrary case, at least one {r} would be in his ampler cycle (3n), and would be a "generator" of the whole group, and however: Kr=rk (µ). In fact, if any {r} belongs to the under-cycle of the 3.rd order, with that is 

r3=1 (µ), (r-1)(r2+r+1)=0 (µ), we remember that 

r2+r+10 (µ) is then r=1 (µ), and it result still: 

r2+r+1=0 (µ).In fact, because of ryn=rzn=rxn (µ): 


Sn=zn(ry-n+rxn+1)=zn(r-n+rn+1) (µ), therefore 

3zn=0 mod.(µ): µ@3. With the intervention of the I Fermat's Theorem, for each {rj}: rj2=1 (µ), but it's already 


rj3n=1 (µ) therefore rj=r(3n, 2)=1 (µ) and banally 


rj=r=r1 (µ). Also in the case in which a certain {r} belongs to the under-cycle of order n, rn=1 (µ): rjn=rn=1 (µ), we would get Sn=0=(r-n+rn+1) mod.(µ@3) and like above 

rj=r1 (µ) therefore Kr=rk=1. In the last case, that nobody of the {r} belongs to anybody of said under-cycles, each of them is a generator of the same whole cycle of order 3n, as demonstrate the congruencies rxn=ryn=rzn (µ), and therefore in general Kr=rk (µ). Accordingly, 

K2r=r-1/Kr=r-(k+1) 


{y/z, z/x, x/y}={r, Rr, R2r}={r, rk, r-(k+1)} (µ), 


R{z/y, x/z, y/x}={r-1, r-k, rk+1} (µ), in coherence with the commutability R(Kr)=K(Rr) in the cyclical group, that we are able to exploit now. Remembering that the {r} they must satisfy to G=xy(z/x+z/y+1)=0 mod.(µ@G) con (xyz, G)=1, and we have rk+r-1+1=0=rk+1+r+1 (µ). For inversion, 

r-(k+1)+r-1+1=0=1+rk+rk+1 (µ) and for comparison with the precedent: rk+2=1, rk=r (µ) or k=3n-2, finally r3=1 (µ), therefore rk+r-1+1=0=r-2+r-1+1 (µ), 1+r+r2=0 (µ). We reach finally the thesis, for direct verification: 

S/y=x/y+z/y+1=r-(k+1)+r-1+1=0 (µ) ...always true µ@G.

Headword for the factors (S)

« In the same hypothesis of the Headword (G), each of the factors µ@G also appears in S, at least with the (maximal) multiplicity v that they present in G, therefore S=0 mod.(G).

» We remember that we have proven in (G): S=0 mod.(µ) at least apiece of the prime factors µ@G. We define µ which multiplicity in S=0 (µ) certainly with 1. Now, if µ presents in G a superior multiplicity v> (like in µv) it then would be 

S2=S2-2G=0 mod.(µΘ), with a multiplicity Θ at least equal to: Θ=MIN(2, v)> (evidently Θ>1). With r=y/z mod.(µ) it is also (cyclically):

z2(1+r+r2)=z2+yz+y2=z2+yz+y2+G=(z+y)2+x(z+y)=(z+y)=S=0 (µ). Besides this, from S2=S2-2G=0 mod.(S2, 2G) and from the hypothesis Sn=0Sn=0 mod.(2G): 


(yn+zn)2=x2n=(S2-y2-z2)n=-(y2+z2)n mod.(Γ) with 

Γ=((1+r+r2)2, 2G ) or (£n+1)2+(£2+1)n=0 (Γ) in one of the quantities £, of the type {r=y/z mod.((1+r+r2)2), certainly prime as above with (1+r+r2)@G. The 1° member, considered which polynomial in £, always if (n, 3)=1 is divisible identically for the trinomial p(£)=(1+£+£2)@(£3-1)@£3n-1) like from the congruence mod.(£2+£+1) considering the algebraic roots according to the method of Ruffini; therefore 


P(£)=(1+£n)2+(1+£2)n is divisible algebraically for p(£).We apply now the polynomial analysis (note in the Six hundred to Pierre Fermat!) therefore necessarily: p(£)@P’(£) in case that p2(£)@P(£). For the determination £=r mod.(µ) with µ@(S, G) we get mod.(µMIN(v, )=(1+r+r2, 2G)): 

P’(r)=0=2nr[rn-2(rn+1)+(r2+1)n-1] because it’s n>>0. But it’s however 1+r+r2=p(r)=0 (µ), r2+1=-r, rn+1=-r-n (µ), therefore (with odd n): 

2nr(-r-2+rn-1)=0=2nr-1[-1+rn-3] mod.(2nµ, 2G, 1+r+r2). 
Reducing finally (r(n-3, 3)-1, r2+r+1)=(r±1-1, 3)@3, we gets 

6n=0 mod.(2nµ, 2G, 1+r+r2), and we remember that µ contains at least each of the prime factors of G, as also: 


(1+r+r2). The preceding congruence points out that the whole of the factors of (2G, S), that they overcome those of S, is limited to MCD(1+r+r2, 6n) and (prime) factors of this type in G don't exist, to less of some µ@(2; 3; n). 

In conclusion, we will show what follows: 


<<1 it is excluded that the factors of the type µ@n, that they belong to G, they overcomes those of S.

 We notice that normally was used a demonstration, only partial (Kummer)[2] regarding the divisibility xyz=0 mod.(µ@n) for the equation in integers xn+yn+zn=0, or equivalent 


Xn+Yn+(-Z)n=0; therefore, it will be been able to resolve definitely the (is so-called) “I case” of the equation of Fermat, equivalent to the hypothesis that is XYZ0(n). 

<<2 We will exclude this, analogously, for factors of the type µ@2. 

<<3 Well, there won't be anything else other than the case
µ@3.

1>> We develop 0=Sn=(zn+yn)+(S-(z+y))n, and we limit us also only to the terms of order as soon as inferior to nS2, therefore g@(S, G) \ 1+r+r2=0 (g): 


zn+yn–(z+y)n+nS(z+y)n-1=0 mod. (ng2>ng). If this is true, it would be necessary zn+yn-(z+y)n=0 mod.(ng) to the maximum, in any power of the prime factors common to G, that is like in 


nS, noting that (z+y, G)@(z+y, x(y+z)z+zy)@(zy, G)=1. 


If we want to show the contrary, we will need to throw back the hypothesis that G contains factors {g} of the type µ@n of superior degree respectively to S. Now, we analyze the expression in r=(y/z): zn+yn-(z+y)n=[1+rn-(1+r)n]zn with the method of the polynomial analysis; enough to do it in the divisible expression which polynomial like: 

f(r)=1+rn-(1+r)n=(1+rn+r2n)-r2n-[(1+r+r2)-r2]n, 

f(r)=(1+rn+r2n)-nr2(n-1)…-n2t-2(-r2)(n-t)(nt)/n…-n, with t=(1+r+r2)t, 2t<n. The terms n2, n (n>3) they are of superior degree to those of n in the factors µ@n, therefore is sufficient to verify, for the ulterior part, at least

(1+rn+r2n)-nr2(n-1)=0 mod. for concluding with the absurdity. We premise that the same expression is divisible by the factors ng@nS, particularly polynomial-divisible by  and in 1+rn+r2n=(r3n-1)/(rn-1)=0 mod.(1+r+r2), 
also for an ulterior factor n. Enough to use the polynomial analysis, certainly considering that 


(1+2r, 1+r+r2)=(1+2r, (4-2+1)/4)@30 (n): 


(1+rn+r2n)’/(1+r+r2)’=nrn-1(1+2rn)/(1+2r)=0 (n). The aforesaid expression is therefore divisible at least for n, therefore f(r)=0 mod.(n), in a module at least equal to 


(µ), like from thesis. 

2>> Will be excluded, equally, for factors of the type 


µ@2 because of the fact already quoted in (G) where we have shown (xyz, 2)1, and (G, 2)=1(µ, 2)=1. 

3>> Therefore, now is necessary only to discuss the case 


µ@3. For what precedes, it is time simply 3v-S=0 (G) with G=0 mod(µ@3), if not of the all S=0 (G). G could contain to the maximum the power (3v) such from to overcome (3)@S, and the same S conforming to (G) must at least contain any prime factor µ@3, properly describable with his maximum -order like

1. We admit for absurd (G, 3)1, and we return to the fundamental hypothesis: 
xn+yn+(S-x-y)n=xn+yn+zn=0. With 

£=y/z mod.(µ+1) we remember the primitiveness 

(n(z+y)z, G)=1; to less of terms in S2=0 (µ+1) we gotten then zn+yn-(z+y)n+nS=(z+y)n-1=0 mod.(µ2) & (µ+1@µ2) therefore necessarily zn[(1+£n)-(1+£)n]=0=(1+£n)-(1+£)n mod.(µ) to the maximum, of the same order of S. 

But the first member, considered which polynomial in £, is already divisible for the trinomial p(£)=(1+£+£2) as comes from the polynomial congruence 

P(x)=(1+£)n-(1+£n)=[(1+£+£2)-£2]n-(1+£n+£2n)+£2n=0 mod.(p(£) where 1+£n+£2n=0 mod.(1+£+£2), always with (n, 3)=1. Now, for a certain determination of r=y/z mod.G, p(£) is divisible for 


µ, we then get that the other factor q(£) of P(£), with 


P(£)=p(£).q(£), won't be divisible for any factor of the type µ@3. If we use again the polynomial analysis, we get accordingly: P’(r)=n[(1+r)n-1-rn-1]0 (µ). Now, is (n, µ)=1 and since p(r)=0 (µ), or 1+r=-r2 (µ),we get for each odd n 

(-r2)n-1-rn-1=rn-1(rn-1-1)0 (µ) or: rn-1+1 (µ). This relationship, to the comparison with 

(r-1)(r2+r+1)=0, r3=1 mod.(µ@3) already impossible for 

n=1 mod.(3) would be to the most compatible with 

r(n-1 mod.3)=r+1 (µ), or n=2 mod.3, and (r-1, 3)=1. Finally, also in this case, we gets an absurdity considering 

r2+r+1=(r-1)2+3r=0 (µ@3) what furnishes (r-1, 3)1. 


Therefore, all the factors µv@G for (µ, 3)1, like above for 


(µ, 3)=1, they are entirely contained in S, that is: µv@µ@S, from where the thesis: S=0 (G).
Great Theorem (and “corollary” of Fermat)

« If, in the ring Z{1}, three "integers" {x, y, z} not zero, with (x, y, z)=1 they satisfies the equality Sn=0 for a prime exponent "natural" n=3, then their sum results void identically: S=0. 


« Accordingly, doesn't exist a triad of natural integers 


{a b c} with abc0 and an natural exponent n>2 that they satisfy to the equation:
An+Bn=Cn. 


» From Sn=xn+yn+zn=0, we rearrange the three variables, and is therefore |z||y||x|. From |xn+yn|1/n=|z| and from the triangular inequality (between integer, real or also complexes) is |x+y|=|z| and |z(x+y)||zy||zx||xy|. 


Therefore, from the preceding Headword S=0 (G): 

z2-xy=z(x+y+z)-(xy+yz+zx)=zS-G=0 (G), or z2-xy=Ç(xy+yz+zx) for a (determined) integer Ç@Z. "Rearranging" the signs in opportune manner, is then possible to set z<0; from xn+yn=-zn (and considered the preceding inequalities) we have 

|z|=-zyx0. Therefore it's necessary:
 


Iz=z2-xy|G|=|z|(x+y)-xy; from this, 
|z||x+y|, and from above then: |z|=-z=x+y, or z+x+y=S=0. 

» For the Great Theorem of Fermat[3] is equivalent to affirm: “three integers {A, B, C}@Z+ (ABC0) don't exist, for which Am+Bm=Cm {for a natural m3}”. This affirmation is immediate consequence of the preceding demonstrations, for all the natural exponents n>3. We remember that we can always reduce {A B C} to the reciprocal primitiveness (to divide the first member of the equation for the common factor) and we could suppose surely
(A, B, C)=1. Though supposing the number natural m are not first, and then contains at least a factor prime odd n>2 (apart from the case n=4), it is opportune to consider for the new bases {x, y, z}={Am/n, Bm/n, -Cm/n} of the powers in (Am/n)n+(Bm/n)n+(-Cm/n)n=0 what follows. 

Case n>3 “odd” prime (we remember, here Z is a particular case of each complex Æ with two elements of base, or
Z@Æ): using the preceding demonstration, Sn=0=S, so that 

z=-(x+y),
0=(x+y)n-xn-yn=xyhΣ1n-1[(nh)xh-1yn-h-1]. 

To less of the case excluded xyz=0, we have: 


xn-2+xyhΣ2n-2[(nh)xh-2yn-h-1]+yn-2=0, from which 

{x@y, y@x}, therefore |x|=|y| and cyclically 


V(x)=V(y)=V(z)=1 {primitiveness}. 
However, since x=0, y=0, in Z(1) doesn't stay anything else other than the banal solution {x, y, z}@{1, 0, -1} and therefore xyz=0. 

Other cases: for n={3, 4} the demonstrations exist (Fermat has outlined these, but they are improved from the successors). In accord, we are able to conclude with our thesis also for the other exponents. In fact, if m>3 doesn't contain any odd factor, it is at least m=4k@Z, and writing 

(Am/4)4+(Bm/4)4=(Cm/4)4 we return to the demonstration for the exponent =4. If instead m contains factor any other prime odd n, we revert in the demonstration for n=3 or finally in the case n>3 that we have already examined. In conclusion, the essential intervention of the I Theorem of Fermat (Headwords G and S) of the polynomial analysis - of which Fermat boasted the use in the search of the tangents to the algebraic curves, through the relationships between "the finished increases" - induces me to the certainty that Pierre Fermat has at least delineated the demonstration (from him definite "really admirable" but that could not write "in the narrowness of the border")... and he same perhaps presaged the institution of births of the new Mathematics, today notes as Groups Theory and Algebraic Analysis! 

NOTE. Really, we are able to confirm globally the Great Theorem of Fermat in Euclidean quadratic fields Æ (=amplifications of Z) for n>2, but the equation s2=0 for integers is solvable in general, directly for algebraic way!
Correspondent enunciates for quadratic fields 


« If three integers {x, y, z} belonging to a Euclidean quadratic ring Æ, not void and with (x, y, z)=1, satisfy to the equality Sn=0 for a integer natural exponent 
n>2, then the sum S of the these integers, to less of a unity factors 

{ux uy uz} on each of them, with the transformation 

{x, y, z}=>{xux-1 yuy-1 zuz-1} appears identically void: S=0.


« Accordingly, they don't existing three natural integers

{a b c}@Z(1), with abc0, that satisfy to the equation: 


an+bn=±cn for |n|>2.


» With the introduction of opportune variations, the demonstration of the Headwords (G, S) could be repeated also in the case that n= 3, so that for each prime factor µ@G=(xy+yz+zx) \ µ@G=>µ@S, and finally |S|=|G|.

» The conclusion could be reached through the same inequalities that I use in the Great Theorem. All this could give account as, with a simple generalization of the case n=3, Fermat was able to imagine for the demonstration of the Great Theorem. All this explains also the difficulties that his successors met for the discovery of the method in the details, in consideration that for n=4 the demonstration is very different!



The demonstrations are the logical consequence of the method that the same author has already developed.[1] 
Final Observation


I have published this work, with the hope that the mathematicians could take it into account in the context of their research of "numbers theory". By this method, Fermat's Last Problem goes back in the correct limits, like the same Fermat could have faced it; moreover in this context should be easier to pass to a numbers theory in the complex field or, more in general, quadratic. My purpose, like I explained in the Introduction, is to examine above all if Fermat could have gotten a demonstration for the Diophantine equation an+bn=cn for n>4. 


The complete demonstration is based on the quadratic rings (of Euclid) where we get a solution "banal" without zero, e.g. for (n, 3)0: 1, , * In the opinion of the author the problem, if it's reported to the exponents "n" in global manner, could be resolved only with a similar demonstration. In the opposite case, also for reasons of mathematical coherence this problem could not be resolved definitely.
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SEPARATE A SQUARE IN TWO SQUARES...

< Arithmetic of Diofanto of Aleksandra, book 2, question 8>

...it's not instead possible to separate a cube in two cubes, or a double square in two double squares, or in general any power of superior degree to the according to in two (others) powers of the same degree: of this thing I have discovered a demonstration really admirable, such that she could not be contained in the narrowness of the border (of the page)... 
“Pierre De Fermat, Observations on Diofanto” edited by his Samuel
* * * * *
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