Charts to support the presentation at the

EIRMA SPECIAL CONFERENCE

TOWARDS A NEW TECHNOLOGICAL BASE FOR INDUSTRY IN THE '90s

PARIS, 17-19 October 1984

NTB 1

PROBLEM STATEMENT

BASIC TRENDS

- > TECHNICAL CHANGE SEEMS TO BE ACCELERATING.
- > THE PRODUCTS AND PRODUCTION PROCESSES OF ENTIRE SECTORS HAVE CHANGED BEYOND RECOGNITION IN A SHORT PERIOD.
- > NEW MATERIALS, NEW TECHNOLOGIES FOR SHAPING MATERIALS AND FOR ASSEMBLING THE FINAL PRODUCT COEXIST WITH THE OLD ONES.
- > INORMATION TECHNOLOGIES TRANSFORM OUR WAYS OF LIVING AND OF WORKING.
- > BIOTECHNOLOGIES MAY HOLD SOME OF THE KEYS FOR MASTERING THE FUTURE.

QUESTIONS

- ➤ ARE WE UNDERGOING A FUNDAMENTAL TRANSITION?
- > TO A NEW "TECHNICAL SYSTEM", CHARACTERIZED BY A NEW "TECHNOLOGICAL BASE"

PURPOSE OF THE CONFERENCE

- > TO LOOK AT THE KEY SECTORS WHICH ARE LEADING TECHN. CHANGE:
- > EXAMINE THEI'R LIKELY HORIZONTAL IMPACT ON OTHER SECTORS.
- > TEST THE HYPOTHESIS OF THE EMERGENCE OF A NEW TECHNOLOGICAL BASE.

NTB 2

A CYCLICAL PATTERN MODEL FOR THE DYNAMICS OF OPEN SYSTEMS

- ➤ A PERIOD OF STABILITY WITH PREDICTABLE EVOLUTION EXPLOITING SYSTEM'S POTENTIALITIES.
- > A PERIOD OF TRANSITION WHEN LARGE FLUCTUATIONS APPEAR AND ARE SUSTAINED.
- > PASSING THROUGH A CATASTROPHY WHERE THE SYSTEM STRUCTURE CHANGES.
- ➤ A NEW PERIOD OF STABILITY WITH PREDICTABLE EVOLUTION WITH A NEW SYSTEM STRUCTURE.

THE TECHNICAL SYSTEM (TS) - AN OPEN COMPLEX SYSTEM

TS = THE SET OF <u>TECHNIQUES</u>, <u>ENSEMBLE</u> OF TECHNIQUES, <u>FILIERES</u>, PRODUCTS, THEIR USE.

- > THE HYSTORY OF TECHNIQUES HAS SHOWN THAT TS FOLLOWS THE DYNAMICAL PATTERN TYPICAL OF COMPLEX OPEN SYSITEM:
 - o THERE ARE PERIODS IN HYSTORY CHARACTERIZED BY A GIVEN TS
 - o FOLLOWED BY A PERIOD OF TRANSITION;
 - o TO A NEW TS.
- ➤ HOW MANY DIFFERENT TS IN HYSTORY
 - o ~10 OF WHICH 5 IN THE LAST 200 YEARS.
- > THE TS FAR FROM TRANSITION IS NOT STATIC **BUT**
 - o INNOVATION CHANGES SHOULD BE <u>COMPATIBLE</u> WITH THE TS STRUCTURE:
 - o RADICAL INNOVATION CAN BE BLOCKED.

NTB 4

THE SIGNALS FROM THE TRANSITION STATE

- A) INCREASED DIFFICULTIES TO MATCH ENVIRONMENTAL CHANGES\$
- B) SATURATION OF SYSTEM GROWTH POTENTIALITIES "COMPLEXIFICATIONS" / REDUCED EFFICIENCY,
- C) POSITIVE FEEDBACKS OF FLUCTUATION PRODUCING IRREVERSIBLE CHANGES.
- D) VISIBLE CHANGES IN SUBSYSTEMS WITH LONGER TIME CONSTANT,

IS TODAY THE TECHNICAL SYSTEM UNDER TRANSITION?

- > DRASTIC TECHNOLOGICAL CHANGES IN HORIZONTAL TECHNOLOGIES:
 - o MATERIALS (COMPOSITES),
 - o PROCESSING UNITS (LASER, ROBOT),
 - o PRODUCTION SYSTEM (FMS),
 - o INFORMATION PROCESSING (VLSI, AI)
- ➤ IN IMPORTANT INDUSTRY NEW TECHNOLOGIES HAVE DEEPLY DIFFUSED:
 - o E.G.- NEW MATERIALS IN AEROSPACE.
 - o E.G.: CIM (COMP, INTEGRATED MANUFACTURING) FOR FABRICATION OF COMPUTERS
- ➤ ENVIRONMENTAL CHALIENGES TO PRODUCTS & PROCESSES HAVE STARTED A DE-MATURITY PROCESS IN MASS-PRODUCING INDUSTRIES (E.G. AUTOMOTIVE)
- ➤ RADICAL NEW TECHNOLOGIES (E.G., GENETIC ENGINEERING.) STRONGLY PUSH FOR RADICAL INNOVATIONS IN IMPORTANT INDUSTRIES (E.G., BIOTECHNOLOGY)

NTB 6

HOW TO IDENTIFY THE TECHNOLOGICAL BASE

- > FROM THE STUDY OF LONG TERM ECONOMIC WAVES
 - o THEY CORRELATE WITH CHANGES IN
 - PRIMARY ENERGY SOURCES.
 - BASE MATERIALS:
 - TRANSPORT TECHNOLOGIES:
 - COMMUNICATION TECHNOLOGIES.
- > FROM' THE STUDY OF DIFFUSION OF INNOVATIONS IN TECHNICAL FILIERES
 - IT IS IMPORTANT THE ROLE PLAYED BY CERTAIN "ENSEMBLE OF TECHNIQUES" WHICH ACT AS INTERMEDIARIES FOR THE DIFFUSION OF BASE TECHNOLOGIES (ENERGY, MATERIALS, ETC.)

GENERIQUE TECHNIQUES

- o E.G., INSTRUMENTATION & CONTROL GOVERNORS.
- o HYDRO/PNEUMO/ELECTRO-DRIVES
- ➤ ALL ABOVE TECHNOLOGIES + <u>PRODUCTION PROCESSES</u> PUT LONG-TERM CONSTRAINTS ON THE **TS** BECAUSE OF RELATED HIGH INVESTMENT.

THE CONFERENCE CHOICE OF COMPONENTS OF THE TECHNOLOGICAL BASE

- ➤ BASE MATERIALS X
- > ENERGY
- > TRANSPORTATION TECHNOLOGY (INDIRECTLY) (INDIRECTLY)
- ➤ INFORMATION/COMMUNICATION TECHNOLOGY X
- > GENERIQUE TECHNIQUES (INDIRECTLY)
- ➤ PRODUCTION PROCESSES X

WHY ADDING BIOTECHNOLOGY?

➤ IT 15 NOT AN "HORIZONTAL" TECHNOLOGY

BUT

➤ IT IS PERVADED BY <u>RADICAL INNOVATIONS</u> THAT MIGHT PLAY THE ROLE OF <u>LARGE FLUCTUATIONS</u> NOT WRITTEN-OFF IF THE SYSTEM IS IN A STATE OF TRANSITION.

IT MIGHT HELP THE TECHNICAL SYSTEM TO ACCELERATE THE TRANSITION.

NTB 8

TOPICS & DISCUSSION GROUPS

	PAPERS	DISC. GR.
NEW MATE- RIALS	BALAZARD* Aerospace LARSSON * Cars DIMMOCK * Vehicle components	GUNTHER
MATERIAL SHAPING	HUART * New processes KUNSMANN* Automob. parts MOSCA * Electro. products	GESSINGER
PRODUC- TION SYSTEM	SKOOG * Robots GILLET * Flexible mnftrng system HEIZINGER*Computer mnftrng	WIGOFO,
INFOR- MATION TECHNO- LOGY	STOTKO * Impact of I.T. CATANIA * Telecomm. HEINTZ * Cars WOOD * Instrum.& control	BOSMA
BIOTECH- NOLOGY	STRIJKERT*New tools SCHÖNE * Pharmac. industry SCHELL * Genetic. Eng.in agricult.	NIELSEN
KREDELL	- LEPETIT - PARNABY	- SCHMIDT/ KASTNER

A RECIPE TO ANALYSE TECHNOLOGICAL CHANGE DURING TRANSITION

➤ 1st STEP

o IDENTIFY THE TECHNOLOGICAL CHANGES AND THEIR POTENTIAL FOR DIFFUSION TO RENEW TODAY PRODUCTS PROCESSES.

➤ 2nd STEP

- o ANALYSE THE SECTORS WHERE THE CHANGES HAVE TAKEN PLACE, AS <u>CASE HISTORIES</u> FOR OTHER SECTORS. ASK THE QUESTIONS
 - WAS THE CHANGE PRECEDED BY "TECHNOLOGICAL CONFUSION?
 - HAS THE R D ROLE CHANGED?

> 3rd STEP

- o ANALYSE THE NEEDS OF CHANGE (ENVIRONMENT, "TECHNOLOGICAL CONFUSION" R&D INEFFICIENCY) FOR MATURE SECTORS.
- o ANY SIGNALS OF DE-MATURITY?
- ➤ 4th STEP
- > ANALYSE WHETHER NEW TECHNOLOGIES COULD BE
 - BLOCKED BY
 - SOCIAL/ECONOMIC CONSTRAINTS
 - NON SATURATION OF EXISTING TECHNOL.,
 - ETC.

OR

- ACCELERATED BY
 - SOCIETY NEEDS
 - CULTURAL ATTITUDES
 - ETC.

NEW MATERIALS

- ➤ A LOT OF CHANGE BUT NO "REVOLUTION".
- > TECHNOLOGY: CAN LIVE WITH THE EXISTING WIDE RANGE OF MATERIALS.
- > C.OMPOSITES: NEED FOR BETTER PRODUCTION PROCESSES.
- > POTENTIALITY FOR FURTHER SOPHISTICATION OF EXISTING MATERIALS.
- > INTRODUCTION OF NEW MATERIALS ONLY FOR ECONOMIC REASONS.
- CONTINUING COMPETITION BETWEEN CONVENTIONAL AND NEW MATERIALS.
- ➤ INCREASE OF MATERIAL ALTERNATIVES.
- > CLOSER COOPERATION BETWEEN MATERIAL SUPPLIER AND USER.
- > CHAGES IN THE STRUCTURE OF INDUSTRY (INTEGRATION OF MATERIAL COMPONENTS).

ADAPTIVE CHANGES - NO TRANSITION

NTB 11

MATERIAL SHAPING

- > INCREASING IMPORTANCE OF SUBSTITUTION OF METALS PROCESSING BY PLASTICS COMPOSITES PROCESSING.
- > NEW LOW VOLUME, COST-EFFICIENT PROCESSING TECHNIQUE.
- > DIRECT (CONTINUOUS) PROCESSING.
- ➤ A DRIVE TOWARDS MINIATURIZATION.
- > SUBSTITUTION OF MATERIALS PROCESSING BY SOLID STATE FUNCTIONS (ELECTRONIC VS MECHANICAL PUNCTIONS).
- > INTEGRATION OF MATERIALS AND PROCESSING INTO PRODUCT DESIGN (CANGE IN COMPANY STRUCTURE).
- > ACCELERATED PRODUCT LIFE CYCLES.

ADAPTIVE CHANGES - NO TRANSITION (UNLESS SPECIFIC SECTORS LAG IN ADAPTATIONS)

PRODUCTION SYSTEM

- > FOR DISCRETE MANUFACTURING PROCESS
 - A SCENARIO OF THE FACTORY OF THE FUTURE IS POSSIBLE;
 - FMS FOR A MIX OF COMPLETELY DIFFERENT PRODUCTS.
- > FMS WILL MODIFY THE DESIGN OF PRODUCTS.
- > THE DYNAMIC OF CHANGE WILL DEPEND ON THE POSSIBILITY TO INTRODUCE FMS STEP-WISE OR FOR ENTIRELY NEW DESIGNED PLANTS.
- > IT IS POSSIBLE TO RECOGNIZE THAT WE ARE IN A TRANSITION.
- > IT IS NOT POSSIBLE TO PREDICT WHERE THIS TRANSITION WILL LEAD, BUT SOME OF THE TRENDS ARE CLEAR.
 - FOR EXAMPLE
 - MORE AUTOMATION:
 - MORE FLEXIBILITY;
 - MORE INTEGRATED OPERATIONS;
 - SHIFT OF HUMAN INVOLVEMENT TOWARD HIGHER LEVELS OF ABSTRACTION,
- ➤ INFORMATION TECHNOLOGY WILL HELP TO MOVE ALONG THESE LINES, BUT THE GREATEST EFFORT STILL IS WITH MANUFACTURING TECHNOLOGY.

INFORMATION TECHNOLOGY

- > TRANSITION? YES, BUT THE PROCESS IS AT DIFFERENT PHASES (FROM INCUBATION TO SATURATION) IN DIFFERENT FIELDS OF APPLICATION,
- > THE CHANGING TECHNOLOGY IS PERVASIVE.
- > THERE ARE DELAYING FACTORS:
 - o INVESTMENT /LACK OF UNDERSTANGING / SOCIAL THREAT.
- > PROBLEM AREAS: TO ENGINEER THE NEEDED SOFTWARE / TO DEVELOP NFW ARCHITECTURES.
- > AREA OF NEED:
 - o EDUCATION AT ALL LEVELS FOR ALL DISCIPLINES,
 - UNDERSTANDING THE POTENTIAL OF **IT** AND NOT ONLY HOW TO APPLY IT.

> **IT**:

- ENABLE US TO INTEGRATE OUR OPERATIONS:
- o IS A SHIPT TOWARD HIGHER LEVEL OF ABSTRACTION.

BIOTECHNOLOGY

- ➤ BIOTECHNOLOGY: A MULTIDISCIPLINARY FIELD (FROM MICROBIOLOGY TO PROCESS ENGINEERING).
- > TRANSITION? VES.
 - o A DRAMATIC INCREASE IN R&D EXPENDITURES:
 - INCREASED EFFICIENCY IN R&D (NOW, AND MORE IN THE FUTURE).
- ➤ INCREASING NEED OF R&D
 - o NOT ONLY IN "RECOMBINANT DNA" BUT ALSO IN ALL FIELDS OF BIOTECH. (E.G. APPLYING COMPUTERS TO FERMENTATION AND RECOVERY TECHNIQUE)
- > NEW DEVELOPMENTS
 - o BIOCATALYSIS;
 - o NEW DRUGS;
 - o MEDICAL DIAGNOSTICS:
 - o TREATMENT OF AUTO-IMMUNE DISEASE:
 - o GENETIC ENGINEERING IN AGRICULTURE (E.G. HERBICIDE RESISTANT PLANT).
- ➤ NEED OF UNIVERSITY/INDUSTRY COOPERATION:
 - o BASIC EDUCATION / POST-GRADUATE TRAINING /SCREENING OF NEW MICROORGANISM / PLANT SCIENCE.

PANEL DISCUSSION

- ➤ **MATERIALS**: CUSTOM MATERIAL DEVELOPMENT (E.G. SEMI-CONDUCTORS, ENGINEERING PLASTICS).
- ➤ **PRODUCTION TECHNOLOGY**: FMS TREND TOWARDS SMALL PRODUCTION SHOP.
- > IT: TO BE CONSIDERED THE NEW BASE TECHNOLOGY (AS IN THE PAST TERMODYNAMIC, OPTICS, ELE£TRICITY);
 - o SELF REPAIRING OF MACHINERY POSSIBLE IN THE FUTURE:
 - o DOUBTS ABOUT ARTIFICIAL INTELLIGENCE / BUT IMPORTANT EFFECT OF APPLYING EXPERT SYSTEMS.
- > BIOTECHNOLOGY: COULD PRODUCE REAL MA.JOR CHANGES
 - SHORT TERM:
 SCALE UP OF GENE TECHNOLOGY / BIOCATALYSIS / INSTEAD OF HIGH PRESSURE, HIGH TEMPERATURE PROCESSES;
 - LONG TERM:
 "SOLIDIFICATION" OF IDEA (GENE OF NEURONAL /PEPTIDE PRODUCTION INPLANTED IN BACTERIA).
- > NEEDED CHANGE IN OUR **METHODOLOGICAL APPROACH**
 - SYSTEM ENGINEERING (IN PRODUCTION WE ARE USED TO YEAR 1950 SYSTEM CONCEPT);
 - o INTEGRATING R&D WITH THE OTHER COMPANY FUNCTIONS;
 - o INCREASE IN ENGINEERING PRODUCTIVITY.

NTB 16

TRANSITION OR NOT?

- ➤ THE CONFERENCE DID NOT AGREE THAT THE QUESTION IS RELEVANT.
- TRE CHANGE MIGHT BE SLOW OR FAST:
 THERE WAS A TENDENCY TO IDENTIFY <u>REVOLUTIONARY</u> CHANGES WITH FAST CHANGES.
- > THERE WAS NO DEBATE ON THE MEANING OF A <u>STRUCTURAL</u> CHANGE IN THE TECHNICAL SYSTEM.
- ➤ GENERAL AGREEMENT: TO COPE WITH THE CHANGE, WE NEED A DIFFERENT MANAGEMENT APPROACH (MORE SYSTEM AND INTEGRATION ORIENTED).

A SCENARIO FOR THE FUTURE TECHNICAL SYSTEM

> MATERIALS

- NEW AND OLD MATERIALS COEXISTING,
- INCRASED COMPLEXITY OF DESIGN AND MANUFACTURING, MANAGED BY INCREASED KNOWLEDGE.

> MATERIAL SHAPING

- DIFFUSION OF NEW PROCESS WITH INTRINSIC FEEDBACK INFORMATION ON THE QUALITY OF THE WORK BEING DONE;
- INCREASED SCIENTIFIC KNOWLEDGE NEEDED TO MANAGE THE NEW PROCESSES IN THE DESIGN AND SHOP FLOOR:
- INTEGRATION OF MULTIPLE FUNCTIONS IN SINGLE COMPONENTS.

> PRODUCTION SYSTEM

- DIFFUSION OF ROBOT AND FMS WILL PRODUCE DRAMATIC CHANGE.

> INFORMATION TECHNOLOGY

- DRASTIC CHANGES IN PRODUCT CONCEPTION AND PRODUCTION;
- MORE TO BE SEEN BY THE DIFFUSION OF **IT** IN THE REALM OF "MECHANICAL" PRODUCTS.

> BIOTECHNOLOGY

- SECTORIAL IMPORTANT CHANGES IN SHORT TERM SCALE:
- INTERSECTORIAL LARGE IMPACT ON LONGER TERM SCALE.