Siamo finalmente a quella parte che distingue un RADAR da un qualsiasi altro ricevitore radio, l'M.T.I.
L'M.T.I. è l'acronimo della frase inglese:
Moving Target Indicator
che sarebbe in italiano: indicatore di bersagli in movimento. Come dice il nome i circuiti che compongono l'MTI hanno lo scopo di filtrare tutti i bersagli in movimento da quelli fermi utilizzando la differenza di fase del segnale ricevuto, come spiegato in precedenza.
Per capire come lavora l'MTI dobbiamo ritornare un pò indietro. Precedentemente è stato detto che un RADAR trasmette un impulso a radio frequenza e quindi rimane in ricezione per ricevere gli echi di ritorno del segnale trasmesso generati dai bersagli, questo periodo di ricezione è chiamato sweep. Gli sweeps la cui durata nel tempo dà la portata del RADAR, sono ripetuti continuamente durante la rotazione dell'antenna. Una singola rotazione completa di 360º è chiamata scan.
Durante la rotazione dell'antenna, gli eventuali bersagli, vengono colpiti da vari impulsi e quindi si avrà la ricezione del loro eco su diversi sweeps. Il numero di questi sweeps dipende dalla velocità di rotazione dell'antenna, dalla larghezza del suo fascio e della durata di ogni sweep. Questo numero è chiamato hits per scan.
Nella spiegazione del ricevitore è stato detto che il segnale di ritorno di un bersaglio ha una fase leggermente diversa da quella trasmessa e che questa differenza dipende dalla distanza del bersaglio, per dare un ordine di grandezza di questa distanza basti dire che avendo una frequenza di trasmissione di 1000MHz, la cui lunghezza d'onda è di 30 cm., basta uno spostamento di 7,5 cm. per ottenere una variazione nella fase del segnale ricevuto di 45°.
Quindi un bersaglio in movimento genererà, ad ogni sweeps, un eco di ritorno con una fase un pò diversa dalla fase dello sweep precedente perchè, essendo in movimento, nel tempo intercorso tra uno sweep e l'altro si sarà spostato e quindi la sua distanza risulta essere diversa.
A questo punto si può spiegare il principio di funzionamento dell'MTI.
Per cancellare un bersaglio fisso e far passare un bersaglio in movimento, si usa un circuito chiamato "CANCELLATORE". Questo circuito, il cui schema di principio è mostrato in figura, è composto da tre elementi: un sommatore, una linea di ritardo, e un invertitore.
Il segnale ricevuto e rivelato in fase, viene inviato al cancellatore entrando sia in uno dei due ingressi del sommatore, che all'ingresso della linea di ritardo. La linea di ritardo ritarderà il segnale esattamente dello stesso tempo della durata di uno sweep, inoltre, in uscita dalla linea di ritardo, il segnale verrà invertito di segno (se il suo valore era di 10 diventerà -10). Quindi nei due ingressi del sommatore avremmo su uno il segnale diretto, mentre sull'altro il segnale generato dallo stesso bersaglio ma dello sweep precedente e invertito di segno.
In questo modo se un bersaglio genera un eco di risposta con valore uguale su due sweep, come succede per i bersagli fissi, in uscita questo segnale verrà cancellato perchè sommando due valori uguali ma di segno opposto il risultato sarà zero; invece un bersaglio in movimento genera un eco di risposta di valore diverso su due sweep e quindi in uscita si avrà un valore maggiore di zero.
Il funzionamento di un cancellatore può essere piè comprensibile con un grafico, rappresentato nella figura sucessiva.
In figura sono disegnati, in maniera schematica, 3 sweeps diversi con i segnali di due bersagli, uno fisso (rosso) e l'altro mobile (verde), inoltre le assi verticali rappresentano i volt mentre quelle orizzontali rappresenta il tempo.
Riferendoci alla figura si può notare che al primo sweep non avviene nessuna cancellazione, perchè il segnale che transita dalla linea di ritardo non è ancora arrivato, quindi, ai due ingressi del sommatore, sono presenti su uno il segnale in arrivo mentre sull'altro non è ancora presente nessun segnale, perciò sommando il segnale in ingresso con zero non si avrà nessuna modifica e il segnale dei due bersagli arriveà all'uscita inalterato.
Questo "errore" non provoca nessun effetto visibile perchè ha la durata di un solo sweep, quindi risulta essere brevissimo.
Nel secondo sweep si nota che il livello del persaglio fisso rimane inalterato mentre quello mobile risulta essere minore dello sweep precedente, quindi in uscita dal cancellatore verrà eliminato il bersaglio fisso, perchè viene sommato con se stesso ma invertito di segno (per esempio -10 + 10 = 0), mentre il bersaglio mobile non viene cancellato perchè risulta essere diverso dallo sweep precedente (-8 + 5 = -3).
In questo caso si può notare che in uscita il segnale risulta essere negativo, questo è normale perchè il rivelatore di fase del ricevitore genera in uscita un segnale che può essere negativo o positivo secondo il valore della fase del segnale ricevuto, quindi si può avere un segnale negativo anche in ingresso al cancellatore, vedi 3° sweep. Ci penseranno dei circuiti sucessivi al cancellatore a rendere il segnale sempre di segno positivo.
Nel terzo sweep avviene esattamente la stessa cosa che nel secondo sweep ma qui il segnale in uscita, nonostante sia negativo, risulta essere più grande anche del segnale in ingresso. Questo fatto dipende da valore dei segnali in ingresso al sommatore perchè se su due sweeps consegutivi i segnali risultano avere lo stesso segno si avrà una sottrazione a causa dell'inversione di segno provocata dall'invertitore, quindi il segnale in uscita avrà un valore minore di quello in ingresso, il contrario accade nel caso i segnali dei due sweeps sucessivi siano di segno opposto.
Questo effetto, chiamato "fase cieca", risulta essere deleterio perchè potrebbe portare, nel peggior dei casi, alla perdita della ricezione dei bersagli, comunque esiste un sistema per eliminare questo inconveniente che spiegherò in seguito.
Questo sistema di cancellazione ha due inconvenieti: la "fase cieca", di cui ho acennato in precedenza, e la "velocità cieca".
Per eliminare la fase cieca nella rivelazione, quindi nel ricevitore, si utilizzano due rivelatori uguali ma che eseguono la rivelazione, del segnale ricevuto, con una fase diversa di 90°, i due segnali così generati vengono quindi inviati, attraverso al solito convertitore analogico/digitale, a due diversi cancellatori.
In questo modo quando in un cancellatore il segnale viene attenuato nell'altro viene amplificato e viceversa. Per finire i due segnali in uscita sono "sommati" tra loro per ottenere di nuovo un solo segnale. Questa somma non è una semplice somma matematica ma in realtà un calcolo matematico più complesso, chiamato "estrazione di modulo", che tralascio per non complicare troppo le cose.