next up previous contents index
Next: Index Up: Physics in the Space Previous: Quantum fields in a

Bibliography

1
M. Toller: A General Scheme for Microscopic Theories. Int. Journ. Theor. Phys. 12 (1975) 349.

2
M. Toller: An Operational Analysis of the Space-Time Structure. Nuovo Cimento B 40 (1977) 27.

3
M. Toller: Classical Field Theory in the Space of Reference Frames. Nuovo Cimento B 44 (1978) 67.

4
M. Toller and L. Vanzo: Free Fields on the Poincaré Group. Lett. Nuovo Cimento 22 (1978) 345.

5
G. Cognola, R. Soldati, M. Toller, L. Vanzo and S. Zerbini: Theories of Gravitation in the Space of Reference Frames. Nuovo Cimento B 54 (1979) 325.

6
M. Toller: Geometric Field Theories with a Given Set of Constant Solutions. Nuovo Cimento B 58 (1980) 181; Erratum: Nuovo Cimento B 62 (1981) 423.

7
M. Toller: Symmetry and Feasibility of Infinitesimal Transformations. Nuovo Cimento B 64 (1981) 471.

8
M. Toller: Extended Test Particles in Geometric Fields. J. Math. Phys. 24 (1983) 613.

9
F. Pietropaolo and M. Toller: The Motion of a Dirac Wave Packet in a Gravitational Field. Nuovo Cimento B 77 (1983) 129.

10
M. Toller and R. Vaia: A Complete Multipole Expansion for a Test Particle in Geometric Fields. J. Math. Phys. 25 (1984) 1039.

11
M. Toller: Causal Order of Local Frames. International School on Geometrical Methods in Theoretical Physics, Ferrara (1987).

12
M. Toller: Theories with Limited Acceleration: Free Fields. Nuovo Cimento B 102 (1988) 261.

13
G. Modanese and M. Toller: Radial Gauge in Poincare' Gauge Field Theories. Journ. Math. Phys. 31 (1990) 452.

14
M. Toller: Maximal Acceleration, Maximal Angular Velocity and Causal Influence. Inter. Journ. Theor. Phys. 29 (1990) 963.

15
M. Toller: Supersymmetry and Maximal Acceleration. Phys. Lett. B 256 (1991) 215.

16
M. Toller: Free Quantum Fields in 10 Dimensions with Sp(4, R) Symmetry. Nuovo Cimento B 108 (1992) 245.

17
M. Toller: Free Quantum Fields on the Poincaré Group. J. Math. Phys. 37 (1996) 2694, gr-qc/9602031.

18
M. Toller: Quantum Reference Frames and Quantum Transformations. Nuovo Cimento B 112 (1997) 1013, gr-qc/9605052.

19
M. Toller: Localization of Events in Space-Time Phys. Rev. A 59 (1999) 960, quant-ph/9805030.

20
M. Toller: Events in a Non-Commutative Space-Time. Phys. Rev. D 70 (2004) 024006, hep-th/0305121.

21
M. Toller: Geometries of Maximal Acceleration. hep-th/0312016.

22
M. Toller: Lagrangian and Presymplectic Particle Dynamics with Maximal Acceleration. hep-th/0409317.

23
M. Toller: On the Nature of the Relativity Principle. physics/0504133.

24
M. Toller: Test Particles with Acceleration-Dependent Lagrangian. J. Math. Phys. 47 (2006) 022904, hep-th/0510030.

25
S. Kobayashi and K. Nomizu: Foundations of Differential Geometry. Wiley, New York (1969).

26
Y. Choquet-Bruhat: Géométrie différentielle et systèmes extérieurs. Dunod, Paris (1968).

27
N. Bourbaki: Éléments de Mathématique, Variététes différentielles et analytiques, Fascicule des résultats. Hermann, Paris (1967).

28
C. W. Misner, K. S. Thorne and J. A. Wheeler: Gravitation W. H. Freeman and Company, San Francisco (1973).

29
E. Cartan: Riemannian Geometry in an Ortogonal Frame. World Scientific, Singapore (2001).

30
A. Einstein: The Meaning of Relativity. Princeton University Press (1945).

31
L. D. Landau and E. M. Lifshitz: The classical Theory of Fields. Pergamon Press, Oxford (1979).

32
S. Weinberg: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972).

33
S. W. Hawking and G. F. R. Ellis: The Large Scale Structure of Space-Time. Cambridge University Press (1973).

34
T. W. B. Kibble: Lorentz Invariance and the Gravitational Field. J. Math. Phys. 2 (l961) 212.

35
D. W. Sciama: On the Analogy between Charge and Spin in General Relativity. in Recent Developments of General Relativity, Pergamon Press, Oxford (1962).

36
R. Utiyama: Introduction to the Theory of the General Gauge Fields. Progr. Theor. Phys. 64 (1980) 2207.

37
F. W. Hehl, P. von der Heyde, G. D. Kerlick and J. M. Nester: General Relativity with Spin and Torsion: Foundations and Prospects. Rev. Mod. Phys. 48 (1976) 393.

38
F. W. Hehl: Four Lectures on the Poincaré Gauge Field Theory. in Cosmology and Gravitation, P. G. Bergmann and V. De Sabbata editors, Plenum, New York, 1980, p. 5. (1980).

39
E. P. Wigner: Unitary Representations of the Inhomogeneous Lorentz Group Including Reflections. Group Theoretical Concepts and Methods in Elementary Particle Physics, F. Gürsey editor, Gordon and Breach, New York, (1964).

40
H. Weyl: A Remark on the Coupling of Gravitation and Electron. Phys. Rev. 77 (1950) 669.

41
S. Weinberg: The quantum Theory of Fields, Vol II, Modern Applications. Cambridge Univeristy Press, Cambridge, UK (1996).

42
T. T. Wu and C. N. Yang: Concept of Non-Integrable Phase Factors and Global Formulation of Gauge Fields. Phys. Rev. D 12 (1975) 3845.

43
C. N. Yang and R. L. Mills: Conservation of Isotopic Spin and Isotopic Gauge Invariance. Phys. Rev. 96 (1954) 191.

44
Y. M. Cho: Higher-Dimensional Unifications of Gravitation and Gauge Theories. Journ. Math. Phys. 16 (1975) 2029.

45
Y. M. Cho: Gauge Theory, Gravitation and Symmetry. Phys. Rev. D 14 (1976) 3341.

46
L. N. Chang, K. I. Macrae and F. Mansouri: Geometrical Approach to Local Gauge and Supergauge Theories and Supersymmetric Strings. Phys. Rev. D 13 (1976) 235.

47
Th. Kaluza: Zum Unitätsproblem der Physik. Sitzungsber. Preuss. Akad. Wiss. Berlin, Math. Phys. K1 (1921) 966.

48
O. Klein: Quantentheorie und fünfdimensional Relativitätstheorie. Z. Physik 37 (1926) 895.

49
F. Lurçat: Quantum Field Theory and the Dynamical Role of Spin. Physics 1 (1964) 95.

50
F. Lurçat: Spin Physics and the Theory of Strong Interactions. Foundations of Physics Letters 18 (2005) 341.

51
Y. Ne'eman and T. Regge: Gravity and Supergravity as Gauge Theories on a Group Manifold. Phys. Lett. B 74 (1978) 54.

52
Y. Ne'eman and T. Regge: Gauge Theory of Gravity and Supergravity on a Group Manifold. Riv. Nuovo Cimento 1, n. 5 (1978) 1.

53
P. K. Smrz: Relativity and Deformed Lie Groups. J. Math. Phys. 19 (1978) 2085.

54
G. Cognola, R. Soldati, L. Vanzo and S. Zerbini: Classical non-Abelian Gauge Theories in the Space of Reference Frames. J. Math. Phys. 20 (1979) 2613.

55
R. Palais: A Global Formulation of the Lie Theory of Transportation Groups. Amer. Math. Soc., Providence, R. I. (1957).

56
P. W. Bridgman: The Logic of Modern Physics. Macmillan, New York (1927).

57
R. Giles: Foundations for Quantum Mechanics. Journ. Math. Phys. 11 (1970) 213.

58
P. K. Feyerabend: Against Method London (1975).

59
G. C. Wick, A. S. Wightman and E. P. Wigner: Superselection Rule for Charge. Phys. Rev. D 1 (1970) 3267.

60
G. C. Wick, A. S. Wightman and E. P. Wigner: Superselection Rule for Charge. Phys. Rev. D 1 (1970) 3267.

61
A. Einstein: Die Grundlage der allgemeinen Relativitätstheorie. Ann. der Phys. 49 (1916) 769. Translated in The principle of Relativity, Dover, New York, 1952.

62
D. Kimberly, J. Magueijo and J. Medeiros: Non-Linear Relativity in Position Space. gr-qc/0303067.

63
M. Toller: Events in a Non-Commutative Space-Time. Phys. Rev. D 70 (2004) 024006, hep-th/0305121.

64
H. Snyder: Quantized Space-Time Phys. Rev. 71 (1947) 38.

65
C. N. Yang: On Quantized Space-Time. Phys. Rev. 72 (1947) 874.

66
G. F. Chew and S. C. Frautschi: Regge Trajectories and the Principle of Maximum Strength for Strong Interactions. Phys. Rev. Lett. 8 (1962) 41.

67
N. M. J. Woodhouse: Geometric Quantization. Oxford Clarendon Press (1980).

68
A. Kirillov: Éléments de la théorie des représentations. Éditions MIR, Moscou (1974).

69
P. A. M. Dirac: The Large Number Hypothesis and the Einstein Theory of Gravitation. Proc. R. Soc. Lond. A 365 (1979) 19.

70
P. Jordan: Schwerkraft und Weltall. Braunschweig (1955).

71
C. Brans and R. H. Dicke: Mach's Principle and a Relativistic Theory of Gravitation. Phys. Rev. 124 (1961) 925.

72
E. R. Caianiello: Is There a Maximal Acceleration? Lett. Nuovo Cimento 32 (1981) 65.

73
E. R. Caianiello, S. De Filippo, G. Marmo and G. Vilasi: Remarks on the Maximal Acceleration Hypothesis. Lett. Nuovo Cimento 34 (1982) 112.

74
H. E. Brandt: Maximal Proper Acceleration Relative to Vacuum. Lett. Nuovo Cimento 38 (1983) 522.

75
G. Scarpetta: Relativistic Kinematics with Caianiello's Maximal Proper Acceleration. Lett. Nuovo Cimento 41 (1984) 51.

76
H. E. Brandt: Maximal Proper Acceleration and the Structure of Spacetime. Found. Phys. Lett. 2 (1989) 39.

77
G. Papini: Revisiting Caianiello's Maximal Acceleration. Nuovo Cimento 117 B (2003) 1325, quant-ph/0301142.

78
T. S. Kuhn: The Structure of Scientific Revolution Chicago University Press (1962).

79
H. Poincaré: La valeur de la science. Flammarion, Paris (1908).

80
Y. Aharonov and T. Kaufherr: Quantum Frames of Reference. Phys. Rev. D 30 (1984) 368.

81
C. Rovelli: Quantum Reference Systems. Class. Quantum Grav. 8 (1991) 317.

82
S. Mazzucchi: On the Observables Describing a Quantum Reference Frame. J. Math. Phys. 42 (2001) 2477, quant-ph/0006060.

83
C. Rovelli: Relational Quantum Mechanics. Int. J. Theor. Phys. 35 (1996) 1637, quant-ph/9609002.

84
N. Bourbaki: Groupes et algèbres de Lie, Chapitre 3. Hermann, Paris (1972).

85
S. Weinberg: Quasi-Riemannian Theories of Gravitation in More than Four Dimensions. Phys. Lett. 138 B (1984) 47.

86
D. Bao, S. S. Chern and Z. Shen: An Introduction to Riemann-Finsler Geometry. Springer Verlag (2000).

87
E. Inönü and E. P. Wigner: On the Contraction of Groups and their Representations. Proc. Nat. Acad. Sci. U.S.A. 39 (1953) 510.

88
E. J. Saletan: Contraction of Lie Groups. Journ. Math. Phys. 2 (1961) 1.

89
A. D'Adda, J. E. Nelson, and T. Regge: Covariant Canonical Formalism for the Group Manifold. Ann. Phys. (N. Y.) 165 (1985) 384.

90
J. E. Nelson, and T. Regge: Covariant Canonical Formalism for Gravity. Ann. Phys. (N.Y.) 166 (1986) 234.

91
C. Crnkovic and E. Witten: Covariant Description of Canonical Formalism in Geometrical Theories. in "300 Years of Gravitation", S. W. Hawking and W. Israel editors, (Cambridge, 1987). (1986).

92
R. Abraham and J. E. Marsden: Foundations of Mechanics. Benjamin, New York (1967).

93
J.-M. Souriau: Structure des systémes dynamiques. Dunod, Paris (1970).

94
V. Arnold: Méthodes mathématiques de la mécanique classique. Éditions MIR, Moscou (1976).

95
G. de Rham: Variétés différentiables Hermann, Paris (1960).

96
R. Haag and D. Kastler: An Algebraic Approach to Quantum Field Theory. J. Math. Phys. 5 (1964) 848.

97
R. Haag: Local Quantum Physics. Springer Verlag, Berlin, (1996).

98
P. A. M. Dirac: Lectures on Quantum Mechanics. Belfer Graduate School of Science, New York (1964).

99
W. Pauli: Theory of Relativity Pergamon Press, London (1958).

100
S. Weinberg: The Cosmological Constant Problem. Rev. Mod. Phys. 61 (1988) 1.

101
P. J. E. Peebles and Bharat Ratra: The Cosmological Constant and Dark Energy. Rev. Mod. Phys. 75 (2003) 559, astro-ph/0207347.

102
L. Vanzo: Campi liberi sul gruppo di Poincaré. Tesi di laurea, Universitá di Trento (1978).

103
E. Mach: Die Mechanik in ihrer Entwicklung historisch-kritisch dargestellt. Leipzig, (1883).

104
S. J. Aldersley: Scalar-Metric and Scalar-Metric-Torsion Gravitational Theories. Phys. Rev. D 15 (1977) 3507.

105
J. K. Webb, M. T. Murphy, V. V. Flambaum, V. A. Dzuba, J. D. Barrow, C. W. Churchill, J. X. Prochaska and A. M. Wolfe: Further Evidence for Cosmological Evolution of the Fine Structure Constant. Phys. Rev. Lett. 87 (2001) 091301, astro-ph/0012539.

106
C. H. Brans: The Roots of Scalar-Tensor Theory: an Approximate History. gr-qc/0506063.

107
J. Magueijo: New Varying Speed of Light Theories. Reports of Progress in Physics 66 (2003) 2025, astro-ph/0305457.

108
C. Rovelli: Teoria dei campi nello spazio dei sistemi di riferimento e ricerca di una teoria gravitazionale con effetti anisotropi. Università di Bologna, Tesi di laurea (1981).

109
C. M. Will: The Confrontation between General Relativity and Experiment. Living Reviews in Relativity http://relativity.livingreviews.org/Articles/lrr-2006-3.

110
V. Faraoni: The Omega-Tends-to-Infinity limit of the Brans-Dicke Theory. Phys. Lett. A 245 (1998) 26, gr-qc/9805057.

111
G. Amelino-Camelia: Planck-Length Phenomenogy. Int. J. Mod. Phys. D 10 (2001) 1, gr-qc/0008010.

112
J. A. M. Vermaseren: New Features of FORM Preprint math-ph/0010025 (2000).



Marco Toller
2007-11-25