Next: Index
Up: Physics in the Space
Previous: Quantum fields in a
1
M. Toller:
A General Scheme for Microscopic Theories.
Int. Journ. Theor. Phys. 12 (1975) 349.
2
M. Toller:
An Operational Analysis of the Space-Time Structure.
Nuovo Cimento B 40 (1977) 27.
3
M. Toller:
Classical Field Theory in the Space of Reference Frames.
Nuovo Cimento B 44 (1978) 67.
4
M. Toller and L. Vanzo:
Free Fields on the Poincaré Group.
Lett. Nuovo Cimento 22 (1978) 345.
5
G. Cognola, R. Soldati, M. Toller, L. Vanzo and S. Zerbini:
Theories of Gravitation in the Space of Reference Frames.
Nuovo Cimento B 54 (1979) 325.
6
M. Toller:
Geometric Field Theories with a Given Set of Constant Solutions.
Nuovo Cimento B 58 (1980) 181;
Erratum: Nuovo Cimento B 62 (1981) 423.
7
M. Toller:
Symmetry and Feasibility of Infinitesimal Transformations.
Nuovo Cimento B 64 (1981) 471.
8
M. Toller:
Extended Test Particles in Geometric Fields.
J. Math. Phys. 24 (1983) 613.
9
F. Pietropaolo and M. Toller:
The Motion of a Dirac Wave Packet in a Gravitational Field.
Nuovo Cimento B 77 (1983) 129.
10
M. Toller and R. Vaia:
A Complete Multipole Expansion for a Test Particle in Geometric Fields.
J. Math. Phys. 25 (1984) 1039.
11
M. Toller:
Causal Order of Local Frames.
International School on Geometrical Methods in Theoretical Physics, Ferrara (1987).
12
M. Toller:
Theories with Limited Acceleration: Free Fields.
Nuovo Cimento B 102 (1988) 261.
13
G. Modanese and M. Toller:
Radial Gauge in Poincare' Gauge Field Theories.
Journ. Math. Phys. 31 (1990) 452.
14
M. Toller:
Maximal Acceleration, Maximal Angular Velocity and Causal Influence.
Inter. Journ. Theor. Phys. 29 (1990) 963.
15
M. Toller:
Supersymmetry and Maximal Acceleration.
Phys. Lett. B 256 (1991) 215.
16
M. Toller:
Free Quantum Fields in 10 Dimensions with Sp(4, R) Symmetry.
Nuovo Cimento B 108 (1992) 245.
17
M. Toller:
Free Quantum Fields on the Poincaré Group.
J. Math. Phys. 37 (1996) 2694, gr-qc/9602031.
18
M. Toller:
Quantum Reference Frames and Quantum Transformations.
Nuovo Cimento B 112 (1997) 1013, gr-qc/9605052.
19
M. Toller:
Localization of Events in Space-Time
Phys. Rev. A 59 (1999) 960, quant-ph/9805030.
20
M. Toller:
Events in a Non-Commutative Space-Time.
Phys. Rev. D 70 (2004) 024006, hep-th/0305121.
21
M. Toller:
Geometries of Maximal Acceleration.
hep-th/0312016.
22
M. Toller:
Lagrangian and Presymplectic Particle Dynamics with Maximal Acceleration.
hep-th/0409317.
23
M. Toller:
On the Nature of the Relativity Principle.
physics/0504133.
24
M. Toller:
Test Particles with Acceleration-Dependent Lagrangian.
J. Math. Phys. 47 (2006) 022904, hep-th/0510030.
25
S. Kobayashi and K. Nomizu:
Foundations of Differential Geometry.
Wiley, New York (1969).
26
Y. Choquet-Bruhat:
Géométrie différentielle et systèmes extérieurs.
Dunod, Paris (1968).
27
N. Bourbaki:
Éléments de Mathématique, Variététes différentielles et analytiques, Fascicule des résultats.
Hermann, Paris (1967).
28
C. W. Misner, K. S. Thorne and J. A. Wheeler:
Gravitation
W. H. Freeman and Company, San Francisco (1973).
29
E. Cartan:
Riemannian Geometry in an Ortogonal Frame.
World Scientific, Singapore (2001).
30
A. Einstein:
The Meaning of Relativity.
Princeton University Press (1945).
31
L. D. Landau and E. M. Lifshitz:
The classical Theory of Fields.
Pergamon Press, Oxford (1979).
32
S. Weinberg:
Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity.
Wiley, New York (1972).
33
S. W. Hawking and G. F. R. Ellis:
The Large Scale Structure of Space-Time.
Cambridge University Press (1973).
34
T. W. B. Kibble:
Lorentz Invariance and the Gravitational Field.
J. Math. Phys. 2 (l961) 212.
35
D. W. Sciama:
On the Analogy between Charge and Spin in General Relativity.
in Recent Developments of General Relativity , Pergamon Press, Oxford (1962).
36
R. Utiyama:
Introduction to the Theory of the General Gauge Fields.
Progr. Theor. Phys. 64 (1980) 2207.
37
F. W. Hehl, P. von der Heyde, G. D. Kerlick and J. M. Nester:
General Relativity with Spin and Torsion: Foundations and Prospects.
Rev. Mod. Phys. 48 (1976) 393.
38
F. W. Hehl:
Four Lectures on the Poincaré Gauge Field Theory.
in Cosmology and Gravitation , P. G. Bergmann and V. De Sabbata editors, Plenum, New York, 1980, p. 5. (1980).
39
E. P. Wigner:
Unitary Representations of the Inhomogeneous Lorentz Group Including Reflections.
Group Theoretical Concepts and Methods in Elementary Particle Physics, F. Gürsey editor, Gordon and Breach, New York, (1964).
40
H. Weyl:
A Remark on the Coupling of Gravitation and Electron.
Phys. Rev. 77 (1950) 669.
41
S. Weinberg:
The quantum Theory of Fields, Vol II, Modern Applications.
Cambridge Univeristy Press, Cambridge, UK (1996).
42
T. T. Wu and C. N. Yang:
Concept of Non-Integrable Phase Factors and Global Formulation of Gauge Fields.
Phys. Rev. D 12 (1975) 3845.
43
C. N. Yang and R. L. Mills:
Conservation of Isotopic Spin and Isotopic Gauge Invariance.
Phys. Rev. 96 (1954) 191.
44
Y. M. Cho:
Higher-Dimensional Unifications of Gravitation and Gauge Theories.
Journ. Math. Phys. 16 (1975) 2029.
45
Y. M. Cho:
Gauge Theory, Gravitation and Symmetry.
Phys. Rev. D 14 (1976) 3341.
46
L. N. Chang, K. I. Macrae and F. Mansouri:
Geometrical Approach to Local Gauge and Supergauge Theories and Supersymmetric Strings.
Phys. Rev. D 13 (1976) 235.
47
Th. Kaluza:
Zum Unitätsproblem der Physik.
Sitzungsber. Preuss. Akad. Wiss. Berlin, Math. Phys. K1 (1921) 966.
48
O. Klein:
Quantentheorie und fünfdimensional Relativitätstheorie.
Z. Physik 37 (1926) 895.
49
F. Lurçat:
Quantum Field Theory and the Dynamical Role of Spin.
Physics 1 (1964) 95.
50
F. Lurçat:
Spin Physics and the Theory of Strong Interactions.
Foundations of Physics Letters 18 (2005) 341.
51
Y. Ne'eman and T. Regge:
Gravity and Supergravity as Gauge Theories on a Group Manifold.
Phys. Lett. B 74 (1978) 54.
52
Y. Ne'eman and T. Regge:
Gauge Theory of Gravity and Supergravity on a Group Manifold.
Riv. Nuovo Cimento 1, n. 5 (1978) 1.
53
P. K. Smrz:
Relativity and Deformed Lie Groups.
J. Math. Phys. 19 (1978) 2085.
54
G. Cognola, R. Soldati, L. Vanzo and S. Zerbini:
Classical non-Abelian Gauge Theories in the Space of Reference Frames.
J. Math. Phys. 20 (1979) 2613.
55
R. Palais:
A Global Formulation of the Lie Theory of Transportation Groups.
Amer. Math. Soc., Providence, R. I. (1957).
56
P. W. Bridgman:
The Logic of Modern Physics.
Macmillan, New York (1927).
57
R. Giles:
Foundations for Quantum Mechanics.
Journ. Math. Phys. 11 (1970) 213.
58
P. K. Feyerabend:
Against Method
London (1975).
59
G. C. Wick, A. S. Wightman and E. P. Wigner:
Superselection Rule for Charge.
Phys. Rev. D 1 (1970) 3267.
60
G. C. Wick, A. S. Wightman and E. P. Wigner:
Superselection Rule for Charge.
Phys. Rev. D 1 (1970) 3267.
61
A. Einstein:
Die Grundlage der allgemeinen Relativitätstheorie.
Ann. der Phys. 49 (1916) 769.
Translated in The principle of Relativity , Dover, New York, 1952.
62
D. Kimberly, J. Magueijo and J. Medeiros:
Non-Linear Relativity in Position Space.
gr-qc/0303067.
63
M. Toller:
Events in a Non-Commutative Space-Time.
Phys. Rev. D 70 (2004) 024006, hep-th/0305121.
64
H. Snyder:
Quantized Space-Time
Phys. Rev. 71 (1947) 38.
65
C. N. Yang:
On Quantized Space-Time.
Phys. Rev. 72 (1947) 874.
66
G. F. Chew and S. C. Frautschi:
Regge Trajectories and the Principle of Maximum Strength for Strong Interactions.
Phys. Rev. Lett. 8 (1962) 41.
67
N. M. J. Woodhouse:
Geometric Quantization.
Oxford Clarendon Press (1980).
68
A. Kirillov:
Éléments de la théorie des représentations.
Éditions MIR, Moscou (1974).
69
P. A. M. Dirac:
The Large Number Hypothesis and the Einstein Theory of Gravitation.
Proc. R. Soc. Lond. A 365 (1979) 19.
70
P. Jordan:
Schwerkraft und Weltall.
Braunschweig (1955).
71
C. Brans and R. H. Dicke:
Mach's Principle and a Relativistic Theory of Gravitation.
Phys. Rev. 124 (1961) 925.
72
E. R. Caianiello:
Is There a Maximal Acceleration?
Lett. Nuovo Cimento 32 (1981) 65.
73
E. R. Caianiello, S. De Filippo, G. Marmo and G. Vilasi:
Remarks on the Maximal Acceleration Hypothesis.
Lett. Nuovo Cimento 34 (1982) 112.
74
H. E. Brandt:
Maximal Proper Acceleration Relative to Vacuum.
Lett. Nuovo Cimento 38 (1983) 522.
75
G. Scarpetta:
Relativistic Kinematics with Caianiello's Maximal Proper Acceleration.
Lett. Nuovo Cimento 41 (1984) 51.
76
H. E. Brandt:
Maximal Proper Acceleration and the Structure of Spacetime.
Found. Phys. Lett. 2 (1989) 39.
77
G. Papini:
Revisiting Caianiello's Maximal Acceleration.
Nuovo Cimento 117 B (2003) 1325, quant-ph/0301142.
78
T. S. Kuhn:
The Structure of Scientific Revolution
Chicago University Press (1962).
79
H. Poincaré:
La valeur de la science.
Flammarion, Paris (1908).
80
Y. Aharonov and T. Kaufherr:
Quantum Frames of Reference.
Phys. Rev. D 30 (1984) 368.
81
C. Rovelli:
Quantum Reference Systems.
Class. Quantum Grav. 8 (1991) 317.
82
S. Mazzucchi:
On the Observables Describing a Quantum Reference Frame.
J. Math. Phys. 42 (2001) 2477, quant-ph/0006060.
83
C. Rovelli:
Relational Quantum Mechanics.
Int. J. Theor. Phys. 35 (1996) 1637, quant-ph/9609002.
84
N. Bourbaki:
Groupes et algèbres de Lie, Chapitre 3.
Hermann, Paris (1972).
85
S. Weinberg:
Quasi-Riemannian Theories of Gravitation in More than Four Dimensions.
Phys. Lett. 138 B (1984) 47.
86
D. Bao, S. S. Chern and Z. Shen:
An Introduction to Riemann-Finsler Geometry.
Springer Verlag (2000).
87
E. Inönü and E. P. Wigner:
On the Contraction of Groups and their Representations.
Proc. Nat. Acad. Sci. U.S.A. 39 (1953) 510.
88
E. J. Saletan:
Contraction of Lie Groups.
Journ. Math. Phys. 2 (1961) 1.
89
A. D'Adda, J. E. Nelson, and T. Regge:
Covariant Canonical Formalism for the Group Manifold.
Ann. Phys. (N. Y.) 165 (1985) 384.
90
J. E. Nelson, and T. Regge:
Covariant Canonical Formalism for Gravity.
Ann. Phys. (N.Y.) 166 (1986) 234.
91
C. Crnkovic and E. Witten:
Covariant Description of Canonical Formalism in Geometrical Theories.
in "300 Years of Gravitation", S. W. Hawking and W. Israel editors, (Cambridge, 1987). (1986).
92
R. Abraham and J. E. Marsden:
Foundations of Mechanics.
Benjamin, New York (1967).
93
J.-M. Souriau:
Structure des systémes dynamiques.
Dunod, Paris (1970).
94
V. Arnold:
Méthodes mathématiques de la mécanique classique.
Éditions MIR, Moscou (1976).
95
G. de Rham:
Variétés différentiables
Hermann, Paris (1960).
96
R. Haag and D. Kastler:
An Algebraic Approach to Quantum Field Theory.
J. Math. Phys. 5 (1964) 848.
97
R. Haag:
Local Quantum Physics.
Springer Verlag, Berlin, (1996).
98
P. A. M. Dirac:
Lectures on Quantum Mechanics.
Belfer Graduate School of Science, New York (1964).
99
W. Pauli:
Theory of Relativity
Pergamon Press, London (1958).
100
S. Weinberg:
The Cosmological Constant Problem.
Rev. Mod. Phys. 61 (1988) 1.
101
P. J. E. Peebles and Bharat Ratra:
The Cosmological Constant and Dark Energy.
Rev. Mod. Phys. 75 (2003) 559, astro-ph/0207347.
102
L. Vanzo:
Campi liberi sul gruppo di Poincaré.
Tesi di laurea, Universitá di Trento (1978).
103
E. Mach:
Die Mechanik in ihrer Entwicklung historisch-kritisch dargestellt.
Leipzig, (1883).
104
S. J. Aldersley:
Scalar-Metric and Scalar-Metric-Torsion Gravitational Theories.
Phys. Rev. D 15 (1977) 3507.
105
J. K. Webb, M. T. Murphy, V. V. Flambaum, V. A. Dzuba, J. D. Barrow, C. W. Churchill, J. X. Prochaska and A. M. Wolfe:
Further Evidence for Cosmological Evolution of the Fine Structure Constant.
Phys. Rev. Lett. 87 (2001) 091301, astro-ph/0012539.
106
C. H. Brans:
The Roots of Scalar-Tensor Theory: an Approximate History.
gr-qc/0506063.
107
J. Magueijo:
New Varying Speed of Light Theories.
Reports of Progress in Physics 66 (2003) 2025, astro-ph/0305457.
108
C. Rovelli:
Teoria dei campi nello spazio dei sistemi di riferimento e ricerca di una teoria gravitazionale con effetti anisotropi.
Università di Bologna, Tesi di laurea (1981).
109
C. M. Will:
The Confrontation between General Relativity
and Experiment.
Living Reviews in Relativity
http://relativity.livingreviews.org/Articles/lrr-2006-3.
110
V. Faraoni:
The Omega-Tends-to-Infinity limit of the Brans-Dicke Theory.
Phys. Lett. A 245 (1998) 26, gr-qc/9805057.
111
G. Amelino-Camelia:
Planck-Length Phenomenogy.
Int. J. Mod. Phys. D 10 (2001) 1, gr-qc/0008010.
112
J. A. M. Vermaseren:
New Features of FORM
Preprint math-ph/0010025 (2000).
Marco Toller
2007-11-25